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GENERAL INTRODUCTION 

There are little chances of being wrong when stating that organic synthesis is the heart 

of modem organic chemistry. Nowadays, it certainly is one of the most dynamic areas of 

interest in chemistry. Synthetic orgsnic chemistry is a key mstrument in answering questions 

such as the origins of life and those of the Universe known so far, the nature of the 

interactions within ourselves, as well as with our surroundings, and ultimately whether we 

may become a galactic civilization or succomb to our own mistakes. The impact that 

synthesis has on our everyday lives is unparalleled, leaving practically no aspect unmarked. 

Medicine, modem agriculture, computers, aircraft and space technology, to name just a few 

areas, benefit and require an "mcreasingly unportant synthetic effort. 

Natural product synthesis offers an excellent trainmg, as well as rewarding results. 

Indeed, the synthesis of such complex targets requires that the scientist be familiar with a 

variety of functional transformation procedures and their mechanistic aspects, and be able to 

use them creatively and efiBciently in a field which is still perceived as a complex hybrid 

between science and art, in spite of all the streamlining and computational involvement it 

benefited fi'om in the past decade. 

The interest that diterpene alkaloids received lately has prompted us to attempt an 

efficient entry into this class of natural products. Some of our most relevant results are 

described in this work. 

The first part of this dissertation addresses some of the work done using adamantane 

as a model for developing new methods of generating bridgehead reactive species. The 

second part details relevant approaches towards the synthesis of complex natural products in 

connection with the methodology previously described. The numbering of the compounds, 

schemes and references used are independent in each section. 
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PART I. A STUDY ON THE GENERATION AND TRAPPING 

OF ADAMANTYL ANIONS 
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INTRODUCTION 

As a result of our interest in diterpene alkaloids containing bicyclo[3.3. l]nonane 

structural subunits, we decided to investigate the possibility of using bridgehead anions as 

intermediates in our synthetic approach to this class of natural compounds. A secondary goal 

that we set for ourselves to achieve, was to investigate the relatively unknown chemistry of 

bridgehead anions and to apply it to the synthesis of simpler, but not less important 

compounds, which either are already known to possess remarkable biological activity, or are 

likely to act as analogs of the former. 
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BRIDGEHEAD INTERMEDIATES EV ORGANIC SYNTHESIS 

A REPRODUCIBLE SYNTHESIS OF ADAMANTANE-CONTAINING 

COMPOUNDS! 

Compounds containing the adamantane subunit have long been of interest to chemists 

due to the rigid structure and well-defined substitution chemistry of adamantane.' The 

discovery of the potent antiviral activity of amantadine (l-aminoadamantane) and rimantadine 

(a-methyl-l-adamantylmethylamme) has stimulated interest in the synthesis of adamantane-

containing compoundsThe significant neuroprotective properties of the N-methyl-D-

aspartate (NMDA) receptor antagonist memantine' (l-amino-3,5-dimethyladamantane) have 

also prompted interest in adamantane synthesis. 

Although the carbocation chemistry of the adamantane system has been extensively 

studied, the chemistry of adamantyl bridgehead anions has been addressed in only a few 

isolated publications. No study of the scope and limitations of adamantyl bridgehead anions 

has been reported. Moreover, the literature of this bridgehead anion is complicated by 

problems related to reproducibility of experimental protocols. 

Dubois and coworkers report that stirring a two-phase mixture of bromoadamantane 

(AdBr, 1) and magnesium actually decreased the yield of Grignard reagent 2 compared with 

allowing the two-phase mixture to stand without stirring.'* Dubois also reported that the use 

of the activated magnesium preparation developed by Rieke did not afford 2. Yurchenko 

developed a quite different set of optimal conditions. He observed significant amounts (38-

AdBr AdMgBr AdCaBr AdLi 

12 3 4 

§Kraus, G.A.;Siclovan,T. M. J. Org. Chem. 1994,59,922. 
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48%) of radical-derived products.^ Organolithium 4 has been prepared and treated with 

nonenolizable ketones to provide hindered alcohols in modest yields.® Recently, Rieke and 

co-workers prepared an activated calcium reagent which reacted vwth adamantyl bromide to 

generate an organocalcium reagent 3 which, upon reaction with cyclohexanone, afforded an 

80% yield of alcohol S.'^ 

AdBr + Ca AdCaBr 
80% 

Ad 

7  ̂
HO 

(1) 

In the context of our continuing interest in bridgehead intermediates,^ we tried the 

procedures of Dubois, Yurchenko and Rieke using adamantyl bromide. Attempts to make 

Grignard 2 and trap it with cyclohexanone gave low yields of alcohol 5 with much recovered 

starting material and some adamantane. Our e7q)eriments using the calcium reagent developed 

by Rieke afforded a 20% yield of 5 with much unreacted 1. These experiments were not 

conducted using drybox techniques, and such techniques appear to be essential.' However, 

the most widely used synthetic organometallic reactions can be conducted without having to 

resort to drybox techniques, so we searched for reaction conditions that were more 

convenient. 

Metal-halogen exchange, a useful method for the generation of organometallic 

compounds, was then tried, Interestingly, Lansbury has reported that the exchange reaction 

between 1-iodoadamantane and tert-butyllithium does not proceed to completion," However, 

the reaction of 1 with lithium wire containing 1-2 % sodium in tetrahydrofiiran (THF) at 0° C 

in the presence of cyclohexanone produced alcohol 5 in 72% isolated yield, presumably via the 

intermediacy of 4. 
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O 

AdBr + Li + (2) 

The reaction of 1 with Li and isobutyraldehyde furnished only a 32% yield of alcohol 

6. Since alcohol 6 was an early intermediate in one of our synthetic routes, we studied the 

effects of varying reaction parameters. Table 1 depicts our results. 

The optimal conditions involved the sonication of a mixture of 1, isobutyraldehyde and 

lithium at 0° C in ether. The reaction of representative carbonyl compounds using these 

conditions is collated in Table 2. The comparison of the resuhs with isobutyraldehyde and 

pivaldehyde suggests that competitive deprotonation by the resulting alkoxide might be 

attenuating the yields. The failure of a-chloroisobutyraldehyde was unexpected and may be 

due to the facile reduction of the aldehyde carbonyl group. Although no chloro alcohol was 

isolated, the mtermediate alkoxide would likely have generated a volatile epoxide by the 

displacement of chlorine. 

Table 1. Reactions of 1-Bromoadamantane, Lithium, and Isobutyraldehyde 

i-PrCHO /1 Li/1 solvent yield (%) 

0.83 2.08 TTIF 32 

1 1.5 THF 40 

4 4.0 THF 7 

1 1.5 EtjO 46 

1 1.5 Et^O 56» 

^ Sonication 
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Table 2. Reactions of l-Bromoadamantane, Lithium, and Carbonyl Compounds 

carbonyl compound RCOR' / I Li /1 solvent yield (%) compd. 

i-PrCHO 1 1.5 Et20 56 6 

cyclohexanone 2 5 THF 72 S 

cyclohexanone 2 5 EtjO 74 5 

2-cyclohexenone 0.83 2.08 THF 58 7 

MejCCHO 2 5 THF 75 8 

MejCCHO 2 5 EtjO 80 8 

PhCHO 0.83 2.08 THF 36 9 

PhCHO 0.83 2.08 Et20 44 9 

Me2C(Cl)CH0 2 5 THF 0 10 

MejCCCOCHO 2 5 Et20 10 10 

5;R„R,= -(CHj),-
6:R, = H, R2 = i-Pr 
7:R„R2 = -(CH2)3-CH=CH-
8:R, = H, R2 = Me3C 
9 .R, = H, R2 = Ph 

Figure 1. Compounds prepared via in-situ generation and trapping of 
1-adamantyllithium with carbonyl compounds 
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The reaction of the in-situ generated adamantyllithium reagent with other functional 

groups was also investigated. Although acetonitrile and propylene oxide did not react, 

adamantanecarboxaldehyde was isolated in 36% yield when dimethylformamide (DMF) was 

subjected to our standard conditions (eq. 3). 

AdBr + Li + DMF AdCHO (3) 

Our preparation of adamantyl carbinols via an in-situ generated organolithium reagent 

affords reproducible yields and is very convenient. It has been conducted on scales ranging 

from 1 mmol to 30 mmol. This work will facilitate the preparation of many compounds 

bearing the adamantane unit. 
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APPLICATIONS TOWARDS THE SYNTHESIS OF BIOLOGICALLY ACTIVE 

COMPOUNDS CONTAINING THE ADAMANTANE UNIT 

As briefly mentioned above, simple compounds containing the adamantane unit show 

remarkable biological activity. For instance, memantine prevents the acute toxic myopathy 

induced by organophosphate nerve agents TABUN, SARIN, SOMAN and VX,^- as well as the 

apoptosis induced in the rat cortical cell cultures by the HIV-1 protein gpl20." 

Due to the interest expressed in the pharmacology of this interesting class of 

compounds, we decided to apply our methodology towards the synthesis of adamantane 

derivatives. Thus, alcohol 6 was dehydrated to alkene 11, which was then converted to the P-

lactam 13 (Scheme 1) or the aziridine 14 (Scheme 2) following the methodology previously 

Scheme 1. 

CISOjNCO 

NaBI^CN 
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developed for the spthesis of derivatives of methyleneadaniantane.i' Litliiuni-

aluminumhydride reduction of lact^ 13 also provided the corresponding azetidine 18 

(eq. 4). The P-adamantyl-a.a-dimethylethylamine 17 was prepared from alkene 11 using a 

Ritter reaction. It exhibited weak inhibition of several retro-virus strands. Amine 15 and the 

hydroxylamine 16 were prepared from alcohol 6 via reductive amination applied to the 

corresponding ketone and reduction of its oxime derivative, respectively (Figure 2). 

0 13 

Scheme 2. 

N=N=N 

11 

then KOH, A 'NH, 

(4) 

NH 18 
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OH 

Figure 2. Examples of compounds readily available from alcohol 6 
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EXPERIMENTAL 

Unless otherwise noted, materials were obtained from commercial suppliers and were 

used without purification. H:EA refers to hexanes/ethyl acetate solvent mixtures for thin layer 

chromatography (TLC) and silica gel flash chromatography (SGC). The purity of all title 

compounds was determined to be > 95% by 300 MHZ proton NMR and/or elemental 

analysis. 

Genera! procedure. Li wire (6 mm in length, 3 mm diameter, 9.6 mmol) was cut into 

small pieces under Nj and was added to a dry, Nj-flushed flask. EtjO (8 mL) was then added, 

followed by a solution of anhydrous AdBr (410 mg, 1.9 mmol) in 2 mL of EtjO. The flask 

was placed in an uhrasound bath containing water and crushed ice and sonication was started. 

The appropriate amount of aldehyde (3 ..8 mmol) was added dropwise via a syringe over 1 h. 

The mixture was fiirther sonicated for 5 h. Depending on the aldehyde used, Li wire soon 

became clean and shiny as it reacted. The flask was then removed from the bath, 15 mL of 

HjO was added, and the mixture was stirred for 5 min. The organic layer was separated, the 

aqueous was extracted with Et20 (3x10 mL), and the combined organic layers were dried 

over Na2S04. The product was separated by SGC with hexanes/ethyl acetate as eluent. 

Compounds 5,9, and 1-adamantylcarboxaldehyde had been previously prepared. 

l-AdamantyI-2-inethylpropanol (6): 'H-NMR (CDCI3) 6 0.90 (d, J = 6.6 Hz, 3H), 0.99 

(d, J = 6 Hz, IH), 1.5-2.1 (complex multiplet, 15H), 2.12-2.24 (broad singlet, IH), 2.90 (br d, 

7 = 3.9 Hz, IH); IR (CCI4) 3495 br, 2954, 2846, 1465,1008, 786, 762 cm->; MS m/e 207, 

165,135,107, 93, 70, 55; HRMS m/e for C,4H240 calcd 208.18272, found 208. 18246; mp 

48-49°C; TLC (H:EA (10:1)) = 0.47. 
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l-AdamantyI-2-cyclohexenol (7) ^H-NMR (CDCI3) 81.4-2.2 (complex m, 21H), 4.15-4.3 

(br s, IH), 5.85 (complex m, IH), 6.09 (d, J = 9.9 Hz, IH); IR (CCI4) 3630, 2910, 2853, 

1454,1289, 1027, 809, 761 cm*'; MS m/e 135,107, 79,65; "C-NMR (CDCI3) 6 18.90, 

25.28, 28.51, 29.54, 35.72, 37.15, 38.45, 67.82, 72.58, 128.79, 131.31; mp 71-72°C; TLC 

(H;EA(10;l))i?, = 0.44 

l-Ad2nsanty!-2,2-din!ethy!propano! (S): ^H-NMR (CDCI3) 5 1.03 (s, 9H), 1.45 (d, J = 

6.3 Hz, IH), 1.60-2.02 (complex m, 15H), 2.78 (d, J = 6.6 Hz, IH); IR (CCI4) 3648, 3530-

3450 broad, 2906,2849,1481, 1363, 1005, 787, 763 cm-i; MS m/e 222,207,165,135,107, 

79, 67; HRMS m/e for CisHjeO calcd 222.19837, found 222. 19820; mp 113-114°C; 

TLC (H:EA(7;l))/?, = 0.61. 
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PART n. SYNTHESIS OF DITERPENE ALKALOIDS 
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LITERATURE SURVEY 

Conjugate addition of Co(III)-generated radicals to a,P-unsaturated ketones 

Important progress has been made in radical chemistry during the past decade. As a 

resuk, synthetic organic chemists routinely consider radical-mediated carbon-carbon bond 

forming reactions in the strategy level planning of complex targets. An extensive review 

concerning applications of radical reactions in natural product synthesis has recently been 

published.' The most widely used methods include: the tin hydride method, the mercuric 

hydride method, the fragmentation method, the atom/group transfer method, the reductive 

method, and finally, the oxidative method of which electrochemical oxidation and the 

manganese(in) acetate oxidations are the most familiar. As is often the case, each of these 

methods have been developed to suit the needs of a particular application and to overcome the 

limitations of the other approaches currently in use at that time. Among the redox methods, 

the Cr(n) and Co(in) techniques proved to be superior in certain instances. Particularly in the 

due course of our research, an extension of the Co(in) method towards the generation of 

highly fimctionalized bridgehead radicals proved to be the only method that yielded the 

desired results. 

A review detailing the acylation and alkylation of a,P-unsaturated ketones by Co(III)-

generated radicals is also available.^ In most cases, primary or secondary halides were used as 

precursors to radical species. In principle, both acylations and alkylations can be effected in 

either intermolecular or intramolecular fashion, although examples of intermolecular 

alkylations dominate. Radical generation may employ the photolysis of the isolated Co 

complexes, or may use an in-situ redox cycle and catalytic amounts of a Co(II) complex 

(Scheme 1). 



www.manaraa.com

16 

With the exception of adamantyl bromide, our examples are the first to illustrate the 

applicability of this method in natural product synthesis via fimctionalized bridgehead radicals. 

A detailed account of our results, in the context of the latest achievements in this field, will be 

presented later in this work. 

Scheme 1. 

R 

PCo(I) + RX PCo(III) 
1 

X 

R 

PCo(III) ^ PCoXGDO + R* P = univalent poiphyrin 
I lig^ 
X 

e" 

• e 

PCo(I) + X- + R* 

e~ 
R* + CHjCHCOMe RCHjCHCOMe ^ RCH2CH=C(0-)Me 
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Particularities of nucleophilic additions to bicyclo[3.3.1]nonan-9-one 

and structurally related systems 

The carbonyl fiinctionality is of utmost importance to organic chemists who have long 

used the vast chemistry of the keto functionality as a pivotal point towards achieving today's 

impressive results in this field. Since nucleophiles may add to its n bond from two opposite 

faces, leading in most mstances to different compounds, considerable attention has been 

devoted to defining the circumstances that govern facial selectivity in this type of reaction.'-'• 

Inclusion of the keto fimctionality in a bicyclic system further complicates its behavior through 

additional and more subtle through-bond interactions with neighboring or more remote 

functional groups. A brief critique involving some of the facts most relevant with respect to 

the research reported in this thesis vwll be given at this point. 

Facial selectivity in bicyclo[3.3.1]nonanone-related systems 

While easy to recognize, although not as easily quantified, the steric factor plays an 

important role in defining 7t facial stereoselection. Fortunately, its influence is always 

predictable in qualitative terms, addition proceeding fi-om the less hindered face, all other 

factors being kept constant. Augmenting or balancing this factor are torsional and electronic 

effects: hyperconjugation, through-bond and spatial electrostatic effects. 

A recent structure and charge density study' of variously 4-substituted cyclohexanones 

and heterocyclohexanones revealed that the electrostatic field difference between the two 

sides of the carbonyl plane affects the stereoselectivity. Transition state studies show that for 

4-axially-substituted cyclohexanones the increased preference for axial attack results from the 

larger barrier for equatorial attack. For molecules in which the ring is flat, the observed 
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preference for axial attack results from increased torsional strain for equatorial attack, 

quantified in the electron density of the axial C-H bonds at Cj and Cg. If coordination with a 

metal species is considered, the selective alkyi addition is likely to involve an electron-transfer 

mechanism. In the radical anion formed, which would have essentially the same geometry as 

that of the neutral complex, steric hindrance commands the addition to proceed from the less 

bulky face of the coordinated ketone.® 

In a study of variously 4-substituted trans-decalones,' equatorial electron-withdrawing 

substituents have been shown to have very little eflfect on the stereoselectivity, while axial 

substituents had a large effect. Ab-initio calculations have indicated that the distortion about 

the C^2-Ca bonds and the pyramidalization at the center are both enhanced by electron-

withdrawing substituents, particularly fluoro substitution. The importance of long-range 

electrostatic effects results from examining the influence of hydroxy and amino substitution, 

which show strong dependence upon group orientation. 

In the case of variously 2,3-endo,endo-disubstituted T-norbomanones®-' (Figure 1), 

nucleophiles approached the carbonyl preferentially from the jyn face in the case of electron-

deficient substituents and from the anti face if electron-donating substituents were involved. 

EWG 

O 

EDG 

EWG EDG 

Figure 1. Substitution pattern of 7-norbomanones used in the study 

of hyperconjugation effects 
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If hyperconjugation is invoked, delocalization of a electrons in the electron-rich antiperiplanar 

bond into the incipient o* orbital lowers the transition state energy. Thus, electron-

withdrawing substituents induce positive charges at C2 and Cj and syn addition becomes 

favorable. For electron-donating substituents, the opposite is true. Negative charges at Cj 

and C3 favor anti addition. 

One of the problems of the hyperconjugation model, when quantitative results are 

sought, stems from the close connection between hyperconjugation and conformation. An 

attempt to dismiss the conformational factor by keeping it rigorously constant was made in the 

case of sterically unbiased 7-norbomanones,i° Indeed, clean, quantitative results could be 

obtained this way. Unfortunately, the data thus obtained can hardly be applied to more 

complex systems, without risking contrasting results between prediction and experiment. 

An extensive study on the behavior oi various c/5-[n.3 .1] bicyclic ketones towards 

hydride and dissolving metal reductions, organometallic additions, condensation with 

dimethyloxosulfonium methylide, epoxidation, osmylation, oxymercuration, and 

cycloadditions mvolving chlorosulfonyl isocyanate and dichloroketene has recently been 

reported." Generally, the results were similar to those reported for A-tert-

butylcyclohexanone. However, when an axially-oriented loop was present, a strong 

preference for the less hindered equatorial approach was noted. Highly biased results were 

obtained when bulky reagents were used. With increasing nucleophile size, a point was 

reached where steric approach became overriding. Since the eflFective size of any reagent is 

also dependent on a number of hardly predictable factors, such as solvation, self-association, 

coordination, and angle of attack, caution must be exerted when attempting to extrapolate 

these resuks to other systems. 

In the case of 5-substituted adamantanones,'^ strongly enhanced selectivities were 

noted, particularly for 5-aza-adamantanone (Figure 2)"' . Addition of methyllithium to 1 

proceeded as predicted, with a 55/45 Z/E selectivity. Borohydride reduction proceeded with 
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reversed selectivity, to give a 62/38 Z/E mixture. A hydrogen-bonded amine center was 

invoked in order to explain this unprecedented result. FoUovving quatemization of the amine, 

borohydride reduction proceeded with a 4/96 Z/E selectivity. Unfortunately, no report has 

been made on the reaction of methyllithium with the same substrate. When considering the 

borohydride reduction, the effect is so much more visible than before because of the powerful 

deactivation of the bonds vicinal to the 5-substituent. 

1 
Me 2 

Figure 2. Aza-adamantanones employed in facial selectivity studies 

Similar face selectivities have been reported when nucleophilic additions to the trigonal 

Cj site in 5-azaadamantane derivatives and in the reduction of variously 5-substituted 

adamantanones were investigated. 

Electrostatic vs hyperconjugative effects as stereoinductive factors in the adamantane 

ring system have been thoroughly investigated with respect to both nucleophilic and 

electrophilic reactions.'® The authors insist that electrostatic field interactions play a dominant 

role in governing nucleophilic additions to adamantanones and that it is unnecessary to invoke 

transition-state hyperconjugative models in these instances. 
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The complexity of the phenomena studied makes quantitative arguments diflficuh, if 

not hazardous, to defend in the case of more complex systems, obtained as a resuh of 

extensive synthetic work. Qualitatively, the wealth of knowledge presently available about 

these systems is reasonably helpful from a synthetic point of view. 

Pharnsacelogicai properties of 3-aza-bicyclo[3.3.1]nonane derivatives 

The 3-aza-bicyclo[3.3.1]nonane system is part of over one hundred known naturally-

occurring compounds {vide infra), the majority of which exhibit potent biological activity. 

Interestingly, the 2,4-disubstituted 3-aza-bicyclo[3 .3 . l]nonanones alone are remarkably active. 

The stereochemical and conformational characteristics of these compounds are critical 

towards their activity. Several of the structure-activity relationships developed for the y-

aminobutyric acid (GABA) receptor have been rationalized in terms of the ability of the low-

energy conformations to dock optimally on the pharmacophore framework and may explain at 

least partially the observed activity associated vnth this class of compounds. The aryl 

substituents lock the molecular skeleton into a conformation which best mimics the GABA 

pharmacophore (Figure 3). 

R 
AT I 

Figure 3. Structural similarities between 3-aza-bicycIo[3.3. Ijnonane and GABA 
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Other derivatives, such as hydantoins, cyanohydrins and aminonitriles of 2,4-diaryl-3-

aza-bicyclo[3.3.1]nonanone and 7,9-diphenyl-8-aza-bicyclo[4.3.1]decanone, have also been 

evaluated for their pharmacological properties.'^ 

In addition to their activity upon the central nervous system, the compounds 

mentioned above, as well as the corresponding nonanes and 3,7-dihetera-

bicyclo[3.3.1]nonanes2o have been investigated with respect to their antiarrhythmic properties. 

When these compounds were administered to anesthetized dogs in which myocardial 

infarction was induced, the most common cause of death, ventricular tachycardia, was 

completely suppressed and could not be induced even artificially. The eflFective dosage ranged 

fi-om 3 to 6 mg/kg, considerably lower than that of lidocaine, commonly used to alleviate, but 

not suppress, these side eflfects. 

Several 2,3,7-trisubstituted 3,7-diaza-bicyclo[3.3. Ijnonanes have also been 

investigated for their antiarrhythmic properties and compared with sparteine, diisopyramide 

and propranolol.21 Although remarkably potent, these compounds exhibited a dangerously 

low therapeutic index, ranging fi-om 0.89 to 1.24. 

More complex molecules possessing the 3-aza-bicyclo[3 .3 .1]nonane motif, such as the 

alkaloids which are the objective of the synthetic effort reported herein, exhibit an even 

broader and more complex spectrum of biological activity, most of which can be utilized for 

medical purposes. 
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STUDIES DIRECTED TOWARDS THE SYNTHESIS OF 

DITERPENOID ALKALOIDS 

Introduction: Pharmacology 

Diterpene alkaloids are of common occurrence in the plant world" and have long been 

of interest to chemists and pharmacists as well. Of these many natural compounds, about 70 

alkaloids of diterpenoid structure have been identified in extracts fi^om plants of genera 

Aconitum, Delphinium (family Ranunculaceae), Spiraea (family Rosaceae), Garrya (family 

Garryaceae) and Comolida (family Consolidaceae). The particular structure of these 

alkaloids makes the synthesis of these compounds both an attractive and a challenging 

endeavor. The pharmacological properties of some of these compounds have been exploited 

since ancient times in regions of the Far East.^' Depending on the particular plant source and 

mode of preparation, the extracts used in traditional Chinese and Japanese medicine show 

analgesic, antiinflamatory, antiarrhythmic and sometimes antipyrhetic properties.^" Besides 

atisine, the spiramines have recently been identified^' in extracts fi^om these sources and there 

seems to be an increasing interest among researchers in Southeast Asia in identifying, isolating 

and characteriidng new active compounds belonging to this class. 

Methyllycaconitine (MLA), found in Delphinium, but not Aconitum, as its name would 

suggest, acts at the neuromuscular junction, inhibiting neurotransmission and inducing 

paralysis. It is stated to be the most potent non-protein antagonist of the neuronal nicotinic 

acetylcholine receptor yet found. According to some reports, its toxicity surpasses even that 

of the notorious snake venom a-bungarotoxin.27 

Lycoctonine, the corresponding neopentyl alcohol derived fi^om MLA, is equally toxic 

to cattle^* and other mammals and insects,although considerably less potent than MLA. 
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Several lycoctonine esters, as well as minute amounts of MLA, find use as muscle relaxants 

during surgery,as they have curare-like activity. Their advantage over other similarly acting 

compounds stems fi^om the fact that MLA is an extremely potent and selective ligand for 

neuronal over neuromuscular nicotinic acetylcholine receptors. 

Recently, it has also been discovered that at least one of the alkaloids present in root 

extracts fi-om plants belonging to theAconiium genus is remarkably effective in restoring the 

protective activity against infections at dosages as low as 10 ng/kg/day.'^ Thus, 

"benzoylmesaconine administered orally to cytomegalovirus-infected mice effectively 

controlled viral, fungal and opportunistic infections". One of the main drawbacks of using 

natural extracts fi'om these plants for medical purposes consists of the fact that the proportion 

of the active agents is highly dependent on the growing and processing conditions of the 

plants used. Unfortunately, some of the diterpenoid alkaloids present in these sources are also 

potent neurotoxic agents, hence the potential for poisoning while using extracts from these 

natural sources and the interest in making these compounds available in pure form through 

synthesis. This will allow for an accurate dosage and a fine tuning of the desired 

pharmacological effect by a more scientifically balanced drug composition. 

Historical 

Based on their chemical structure, the above mentioned diterpene alkaloids belong to 

three groups: aconitine type alkaloids, of which methyllycaconitine is one of the most complex 

representatives, atisine type alkaloids, shown here as the most complex, recently identified 

spiramine F representative^ (Figure 4) and a minor series represented by garrya alkaloids. 

These formulas have been given here in order to provide a reference for the work which will 
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Methyllycaconitine: Spiramine F: 

OMe 

MeO 

B — 
OH 

OH 
OMe 

Me 

OH 

/ 
OH 

Figure 4. Structural and functional features of aconitine and atisine type alkaloids 

be presented. The numbering system and the structures of some of the most representative 

alkaloids in each group are given in Appendix I. 

The common feature of these compounds consists of the 3-azabicyclo[3 .3. Ijnonane 

system which also suggests a common intermediate for the synthesis of these alkaloids. 

Construction of the 5,6,7- fiised tricyclic moiety present in the aconitine alkaloids represents a 

truly outstanding synthetic challenge. A serious obstacle is also represented by the 

construction of the bicyclo[2.2.2]octane ring system in the case of atisine alkaloids. This is 

probably the main reason why there are no reports regarding total syntheses of aconitine 

alkaloids and only two formal synthesis of atisine in spite of their practical interest. This is in 

strong contrast with the numerous reports on the isolation and characterization of diterpene 

alkaloids from natural sources. 
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Natural product chemists have been among the first to investigate the chemistry of 

these highly fiinctionalized compounds.'^ An early partial sjoithesis of atisine (1) belongs to 

Pelletier.^^ Thus, the diester 2, obtained as a degradation product of the natural alkaloid, was 

reconverted to atisine (Figure 5). 

Figure 5. Atisine (1) and a degradation product (2) used in its synthesis 

The desired transformation was achieved by first subjecting 2 to a Dieckmann 

cyclization vwth sodium in xylene, followed by hydrolysis and decarboxylation of the 

corresponding P-ketoacid to give ketone 3 (Figure 6). Methylation, followed by a 

bromination-dehydrobromination sequence, introduced the methylene group, resulting in the 

formation of compound 4, which was reduced to the corresponding mixture of epimeric 

alcohols fi"om which 5 was separated. Removal of the acetyl group and replacement with an 

ethyl group gave atisine 1. 

1 2 



www.manaraa.com

27 

Ac- Ac-

3: Ri = R2 = H 

4: Ri, R2 = CHj 

Figure 6. Products obtained via cyclization of compound 2 

Scheme 2. 

OMe 

HCN, 

EtjAlCl 

OMe 

7;R=0 

8,9:R = Me, CHO 
(epimers) 

l.NaOH 

2. MsCl, Py 
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The first total synthesis of atisine, albeit formal, belongs to Nagata.^'' The synthetic 

work began with compound 6, readily available in four steps from 6-methoxy-l-tetralone 

(Scheme 2). Hydrocyanation of 6 afforded a mixture of crude cyanoketones which 

epimerized to 7 upon recrystallization in the presence of hydrochloric acid. Wittig olefination 

with Ph3P=CH0Me, acid hydrolysis and subsequent methylation gave, upon separation, 

compound 9. A one step procedure in which alkaline hydrolysis to the amide, and 

condensation with the aldehyde moiety was followed by ethylation, resulted in the formation 

of an epimeric mbrture of ethoxylactams which was reduced with lithium aluminumhydride to 

the corresponding cyclic secondary amine. The free base underwent Birch reduction which, 

upon acid treatment, followed by protection of the secondary amine with mesyl chloride, gave 

enone 11. A rather lengthy and quite cumbersome sequence of reactions, of which a few key 

points are depicted in Scheme 3, was necessary to reach Pelletier's intermediate 4. 

In order to construct the bicyclo[2.2.2]octane ring system, compound 11 was again 

hydrocyanated; conversion of the highly hindered cyano group into the methyl ketone was 

achieved via the corresponding ketal, resulting in the formation of compound 13 (Scheme 3). 

Since cyclization of this intermediate resulted in the formation of a bicyclo[2.2. l]heptane 

system, a one carbon extension sequence was required, eventually leading to the formation of 

Scheme 3, 

11 4 

12:R=CN 14 

13:R=C0CH3 
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compound 4, which had akeady been taken to the natural compound atisine. In spite of the 

initially concise approach, this synthesis is shadowed by the long synthetic path required in the 

end. It has, nevertheless, the merit of being the first truly synthetic approach in its class. 

According to Fukumoto, a Nagata-type intermediate of a structure similar to that of 7, 

can be more readily attained using a regiospecific, stereocontrolled electrocyclic reaction 

applied to a fUnctionalized benzocyclobutene derivative,'' or to an appropriately 

fiinctionalized o-quinodimethane, as illustrated in Scheme 4. 

Scheme 4. 

.OMe .OMe .OMe 
NC NC 

MeOjC-" CH, MeOzC^* CH, 

15 

Although the strategy depicted in Scheme 4 proved to be successful, it did not address 

the real shortcomings of Nagata's synthesis, which only surface towards the end of that 

synthetic effort. A conceptually different approach was later undertaken by Fukumoto, in a 

beautiful asymmetric formal total synthesis of atisine via an intramolecular double Michael 

reaction used in the key step.'' The synthetic strategy is shown in Scheme 5. 

Pelletier's intermediate 4 is readily available from compound 17 via 

decarboalkoxylation, which, in turn, results from the double 1,4-addition of the anion of 18, 

first to the unsaturated ester moiety in a six-exo-trig cyclization, immediately followed by a 

six-endo-trig cyclization of the resulting anion onto the enone moiety. Compound 18 is 
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available as a single enantiomer from the meso compound 19 by enzymatic desymmetrization. 

Construction of the 3-azabicyclo[3.3. l]nonane system is achieved again at an early stage, 

following a known procedure, consisting of a double Mannich reaction on the commercially 

available ketodiester 20. 

In spite of the beautiful science developed in the due course of this work, the synthesis 

of atisine by this route is well beyond practicality. Not only is the proposed route long by 

itself, which results in low overall yields, but the completion of the synthesis via Pelletier's 

route would add several steps which constantly proceed in discouragingly low yields. 

Scheme 5. 

(Pefletier) 

COjMe 
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Wiesner and coworkers have successfiilly prepared a tetracyclic intermediate suitable 

for the synthesis of diterpene alkaloids.'^ However, an unexpected rearrangement noted by 

Bimbaum^' precluded them from reaching any of the desired target compounds, in spite of 

some quite pertinent approaches. A different route was explored later.''^' 

In the other series, a semi-synthesis of inuline, delsemine analogues and 

methyllycaconitine was recently reported by Blagbrough/" It actually consisted of acylation 

of the neopentyl alcohol functionality present in lycoctonine by a series of variously 

substituted acids. In a related work, the 3-aza-bicyclo[3 .3 . IJnonanone moiety and variously 

substituted anthranilate esters were connected via a 1-hydroxymethyl function on the bicyclic 

system''^. The distance to any of the natural compounds is appreciable. 

Presently, only the work of Whiting^' really addresses this class of compounds from a 

synthetic point of view (Scheme 6). Thus, the mono-protected dialdehyde 21, obtained from 

1,4-pentadienol in four steps, was converted to the isoxazolidines 22 and 23 following direct 

treatment with methyl- or ethylhydroxylamine. 

Efficient cleavage of the N-0 bond was achieved using nickel chloride-sodium 

borohydride. A one-pot reductive amination carried out at pH 5.5 effected both the acetal 

hydrolysis and ring closure to give compounds 26 and 27, which were then methylated with 

methyl iodide via the corresponding alkoxide. The competing N-alkylation step seems to be 

inhibited by steric compression of the resuhing quaternary ammonium salts. 
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Scheme 6. 

CHO 

!•  ̂
''CHCOMe)^ 

21 

RCH,NH0H-HC1 0- -N 

".I,/ 

CH(0Me)2 

22:R=H 

23:R=Me 

NiCl2-6H20,NaBH4 

H .H 

26:R=H 

27:R = Me 

NaBH,CN 

pH5.5 

\NaH,  Mel 

OH NH 

CH(OMe) 

24:R=H 

25:R = Me 

MeO 

28:R = H 

29:R=Me 
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RESULTS AND DISCUSSION 

Retrosynthetic analysis 

Stimulated by the recent discovery of novel pharmacologically active compounds 

belonging to the spiramine group, which are closely related to the natural compound atisine as 

shown before, we decided to engage ourselves in a search for a synthetic route which would 

have sufiBcient generality to allow not only for the synthesis of the parent compounds, but also 

for a number of analogs. This would be of significant importance for structure-activity 

correlations. We also imposed on ourselves an additional constraint, by attempting as short a 

synthetic sequence as possible, with the express goe , increasing the availability of these 

compounds, to the extent that might make them marketable. 

A study directed towards the total synthesis of aconitine alkaloids would be an 

impressive task by itself, especially since there are no such previous attempts. Due to the 

similar structural features of these two classes of natural compounds, we dared envision a 

possible common pathway which would give us access to both series of alkaloids. In the 

approach shown in Scheme 7, an intermediate such as I would satisfy this condition. 

Furthermore, this could in turn be prepared from a single compound, such as the 

fimctionalized bridgehead bromide n, conceivably via anion or radical chemistry. 

The approach illustrated in Scheme 8 would allow for the formation of a tetracyclic 

intermediate via compound HI, which in turn could again be prepared via the same bridgehead 

bromide n employed in Scheme 7. Although the use of anion chemistry for the ring closure 

step would be purely speculative in this instance, the use of radical chemistry to effect the 

same transformation would have all the prospects to be successful. 
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Scheme 7. 

4 

n= 1; 
R2=H,R' = Ac; 
X,Y = 0 
aconitiiie type a!ka!oids 

n= 0; 
R2, R3 = O; 
X = H,Y = Ac 
atisine type alkabids 

R' = Et, P-hydroxyethyl 

Scheme 8. 
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Synthetic studies based on nucleophilic 

additions as key steps 

Although the strategy outlined in Scheme 7 seemed more challenging since it involved 

more unknov/ns than that of Scheme 8, we decided to investigate first the somewhat safer 

approach of the latter. Thus, bridgehead bromide 31'*^ was prepared from commercially 

available ketoester 30 in 55 to 65% yield over two steps, on scales up to 0.25 moles (eq. 1). 

30 

l)Br, 

2)CH20,EtNH2 

J 

(1) 

31 

Preliminary research in our group'*' has determined that both organolithium and 

organomagnesium compounds add well to the ketone 31, but the reaction products are quite 

different. While the Grignard reagents yield the expected tertiary alcohols, the intermediary 

lithium alkoxides undergo a rapid rearrangement even at -78° C, which results in the expulsion 

of the bromide anion and the formation of a ring-contracted product bearing a 

bicyclo[3.3.0]octane ring system. It is for this reason that the sequence of transformations 

outlined in Scheme 9 was addressed, as a means of obtaining the important intermediate 34 

(Scheme 10). 

Although both the addition of ethoxyacetylene^ bromomagnesium salt and the acid-

catalyzed rearrangement of the corresponding carbinol'*'® proceeded smoothly and in high 
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Scheme 9. 

Br 

** * ! 

J 

o H 

.Et 

-O •N' 
MgBr 

then cat. H2SO4 

J 

DBALH 
a, ^ 

cooa conpfex mixture 

32 

.Et y 
MgBr 

then cat. H2SO4 

33 

yields, the unsaturated diester 32 could not be converted to the desired aldehyde 34 upon 

reduction with diisobutylaluminum hydride. Stronger reducing agents also afforded a complex 

mixture of products from which the corresponding diol could not be isolated. Since selectivity 

between the two ester groups was also a concern, we decided to repeat the same sequence of 

reactions using ethylthioacetylene*''' which would give an ethylthio ester, considerably more 

reactive than the other ester group present in the molecule. Indeed, compound 33 was 

obtained in excellent yield. Several functional transformations resulting in the formation of 

aldehyde 34 have been investigated"® (Scheme 10). 

Much to our surprise, the desired unsaturated aldehyde was not formed. Although 

both 32 and 33 were cleanly obtained as a single diastereomer as evidenced by their 'H-NMR 

spectrum, no attempt at assigning the configuration of the double bond was made at this step. 

The configuration of the double bond is not important, since it must be saturated eventually in 
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Scheme 10. 

EtjSiH, cat. Pd/C 

RaneyNi, excess ^ 

Hj/RaiseyNi 

order to form an atisine-like structure. It is, however, possible that the actual configuration be 

E- rather than Z- (shown), for which steric congestion of the thioester moiety would be 

considerably enhanced. 

Differentiation between the two sites could be achieved following alkaline hydrolysis 

(Scheme 11), but reduction of the corresponding amino-acid 35 gave a stable borate. 

Scheme 11. 

startiog material only 

conpfex mixture 

con^lex mixture 

No:  34 

33 
1 eq.KOHinEtOH 

J 

& BH3 • Me2S 

cxDce 

35 

stabte borate 

Unfortunately, bulkier anions did not add to the thioester moiety. Attempts to trap an 

acyl cation formed as a result of treating 33 vwth a suitable Lewis acid were unsuccessful as 

well (Scheme 12). At this point we decided to concentrate our efiforts in a parallel direction 

that we were pursuing simultaneously (Scheme 13). Treatment of the ketone 31 with 
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ethynylmagnesium bromide gave carbinol 36 as a mixture of isomers. As we have noticed in 

the case of other Grignard compounds, addition proceeded preferentially from the face away 

from the nitrogen with approximately 2 to 1 selectivity. Separation of these compounds 

appeared impossible by flash column chromatography (FCC). 

In the case of 36, however, treatment with a catalytic amount of mercury(n) sulfate 

under acidic conditions'*' resulted in complete epimerization to 37, instead of the expected 

hydration product. While unusual, although predictable by molecular modeling calculations at 

the MM2 level,'® this result was encouraging, since the one-carbon bridge had the 

configuration required by the natural product. 

Scheme 12. 

starting material only 

33 
OIMS 

\ 
AgOTf or AgOjCCF-

conq)lex mixture 
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Scheme 13. 

OH cat. HgS04, cat H^SO^ OH 
_ HC CM^r 
lir 

aq. THF 

31 

37 

MsaEt3N^ NaBH3CN^ starting nBterial 

TFA,0°C 
37 

NaBHjCN, Znl, 
compEX nnxtuie 

Reductive elimination of the hydroxy group'' in compound 37 was unsuccessful. In 

the due course of this work we gathered additional evidence that the hydroxy group in 

compounds such as 37 is extremely hindered. Reactions involving this position often resulted 

either in the recovery of the starting material or in the formation of complex mixtures of 

products. Even though the hydroxy function could not be removed at this stage, we decided 

not to abandon this route yet. The sequence of reactions shown in Scheme 14 was designed 

to provide a significant advance on the pathway towards atisine type alkaloids. 

Although we obtained compounds such as 38 via the addition of the corresponding 

alkyne anion to 31, the palladium catalyzed coupling" was preferred since it formed one 

diastereomer only. Initial results in the coupling reactions were disappointing vnth respect to 

both the yield and rate of the reaction. We found that the use of bis(benzonitrile)palladium53 

dichloride, copper (I) iodide and piperidine as a solvent'"* resulted in the formation of the 

corresponding adduct in less than two hours at room temperature and in yields in excess of 
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80%. Reduction of the triple bond set the stage for a six-endo-trig cyclization. Molecular 

models showed that the configuration at the one carbon atom bridge effectively controls the 

stereochemistry of the tetracyclic compound thus formed if the reaction proceeds through the 

lower energy chair-like transition state. Thus, the cyclohexenol hydrogen and the hydroxy 

group tend to be syn to each other following cyclization. The same relationship exists in the 

natural compounds of this class. 

Scheme 14. 

PdL^,: Pd(PPh3)4, PdCl2(PPh3)2, PdCl2(PhCN)2 
p^eridhe as solvent 

leduction 

38 

39 
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Considerable eflFort was invested in finding the proper conditions which would efifect 

the transformation leading to 39 (Table 1). Unfortunately, the desired transformation could 

not be achieved. Based on our previous experience with similar systems, an alternative route 

was envisioned as shown in Scheme 14. Although the rearrangement following oxidation''^ of 

38 proceeded smoothly giving 40 as a single diastereomer, based on the unsuccessful 

cyclization attempt, it is very likely that the product contains an (E)- double bond. 

Since reduction of the very hindered triple bond in 38 was one of the problems that 

could not be overcome, we sought to introduce a double bond at an early stage instead. 

Compound 41 was easily prepared according to equation 2, again as a mixture of isomers. 

Table 1. Attempted reduction of alkyne 38 

Reagent / conditions product / comments 

Hj / Lindlar cat., quinoline starting material 
starting material 
starting material 
triol, alkyne 

Rieke Zn'' 
Rieke Zn / THF-aq. MeOH, reflux 
LiAlH4 
Hj / Pd-C, normal pressure 
Hj / Raney Ni 

starting material 
reduced double bond 
triple bond unaffected 
starting material i-BuMgCl / cat. CpjTiClj'^ 

substrate; 38,2° alcohol protected as MOM ether 

i-BuMgCl / cat. Cp2TiCl2 
3 equiv. i-BuMgCl /1.1 equiv. Cp2TiCl2 

starting material 
unidentified product 
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Scheme 15. 

-Br 

T 
OH 

38 

PCC/Celite 
-Br 

or Swem oxidation 
II II 
o o 40 

Bi^SnH, MBN 
40 > reduced 40, no cycKzation 

orvitainnB,2/Zn 

Many tertiary allylic alcohols rearrange under oxidative conditions'® to give the 

corresponding unsaturated aldehydes. Similarly, treatment with concentrated HBr or HCl 

yields the primary rearranged halides.^' The rearranged primary allylic chloride can also be 

obtained \da the [2,3] sigmatropic rearrangement of the corresponding sulfinyl ester .®" All 

these procedures failed to give any of the desired products (Scheme 16). Milder oxidants, 
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Scheme 16. 

PCC or PDC / Celite 
coirqjlex mixture + starting material 

41 

CrO, 

/Sr' 
H 

or Jones oxidation 

48% HBr, reflux 
^ 

1)PhSCl 
> 

2) A 

MgJj, PhH, refiux®^ 

conplex mixture 

stardt^ material 

starting material 

starting material; 

sealed vial, 120°C, 1/2 h; conq)lex mixture 

such as PCC, PDC or other chromium(VI) complexes,^' as well as the more vigorous Jones 

reagent were equally ineffective. 

Compounds 42 and 43 were obtained in less than 20% yield following direct treatment 

of the magnesium aikoxide with thionyl chloride or phosphorous tribromide respectively 

(Scheme 17). Both of the products proved to be very reactive, intermolecular alkylation of 

the amine moiety being the most probable cause for their lack of stability. 

The desired aldehyde 34 could have conceivably been obtained following 

rearrangement of compound 44 (Scheme 18). However, reduction® of the previously 

prepared tertiary carbinol did not afford 44. 
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Scheme 17. 

OMaBr 

SOCI2 
<20% 

42 

PBr, 
l^Br 43 

Scheme 18. 

H^lindlar cat. 
Br »> starting material, not; 

OEt 

OEt 
44 
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45 

Li OEt 

46 

E^ Br 

rCHO 
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Unfortunately, this compound could not be prepared directly, due to unsuccessful 

attempts to prepare 45. The organolithium 46 cleanly added to various carbonyl compounds, 

including 31, yielding the expected products. As previously described, the ring-contracted 

product was formed in the latter case. Furthermore, all products rearranged to the 

corresponding unsaturated aldehydes upon treatment with a catalytic amount of sulfuric acid. 

Ozonolysis of 41 gave a complex mixture of products instead of the expected a-

hydroxyaldehyde. However, a carbonyl homologation sequence®"* would have added an extra 

step to the synthesis. 

An intramolecular version of the Lewis acid catalyzed alkylation®' using the allyl silane 

47, prepared in conjunction with our synthetic studies on the spiramine alkaloids, fell prey to 

the same steric and electronic factors which prevented us from obtaining 34 (equation 3). 

In spite of its initial promise, this route became too unproductive to be able to maintain 

our interest in it. It was replaced by a set of less conventional, but more intriguing ideas. 

E-^Tv^^'T^Br 

E O E 

47 

/ \ 

BFs'OEfj 
47 

SnCl, 

-78°C 

desiiylated 
47 only 

( 3 )  
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Synthetic studies based on bridgehead intermediates 

Studies on the generation and trapping of highly functionalized bridgehead anions 

Encouraged by the consistent results obtained while studying bridgehead adamantyl 

anions, we decided to expand the methodology we developed such as to comprise more 

complex systems. For this purpose, compound 48 was prepared as a mixture of isomers, in 

excess of 80% yield over two steps (equation 4). 

i O 

1)LiAlH4 
*Br »• 

2)M0MC1 
(4) 

The methodology that was so successful in the case of adamantyl systems failed to 

give any of the desired compounds in the case of 48. The use of Rieke calcium^® aflForded a 

complex reaction mbcture, which was also obtained while attempting to prepare the 

corresponding Grignard reagents (Scheme 19). 

It is well known that many organometallic compounds, those deriving from the main 

two groups of the periodic table notably, associate to a degree varying from dimers to 

hexamers,®'' depending on the actual cationic and anionic species involved and on the 
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Scheme 19. 

0 

Rieke Ca 

48 conplex mixture 

O 

A-

U 

48 

somcation 

starting material mosdy 

particular conditions employed in their preparation, of which the donor ability of the solvent 

plays a key role. Such aggregates decrease the overall energy of the system through the 

formation of multicentered bonds at the expense of the lower entropic factor. Since in our 

case the anionic species generated would be considerably bulky, it is possible that steric 

factors overcome electronic ones to such an extent that the reaction becomes impossible. 

While considering our options in this direction, we were simultaneously pursuing an 

alternative route in which bridgehead radicals played a crucial role. 
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Methods for bridgehead radical formation. 

Preparation of an intermediate for the synthesis of gibberellins§. 

Radicals are now well recognized as versatile intermediates for the construction of 

highly functionalized molecules.Research in radical chemistry has resuhed in many useful 

methods by which radicals can be generated. Although tin hydride chemistry remains the 

dominant means of radical generation,^' both photochemical procedures™ and metal-mediated 

procedures'! are becoming increasingly important. Of the latter group, the manganic acetate 

chemistry of Corey'^ and Snider'^ and the persulfate chemistry of TorseF"* and Minisci^' are 

the most extensively studied. The use of these reagents has been suggested by the structure of 

manganese(III) acetate in which the three Mrt ions, positioned at the vertices of a triangle, 

share an O^- ligand at its center, facilitating a «ne-electron transfer involving substrates that 

can be readily deprotonated, and are thus fairly acidic, such as P-diketones or P-ketoesters. 

Indeed these species, as well as equivalent acidic compounds, have been successfully 

employed in the construction of polycyclic y-lactones'^ and related interesting annulations'" 

based on oxidative free-radical type cyclizations. Although cobalt complexes have been used 

by Baldwin,'® by Pattenden'' and by Braunchard'® to effect intramolecular cyclizations, 

intermolecular bond formation using catalytic cobalt species has been little studied.'^ In most 

cases, the complexes obtained from relatively simple primary or secondary halides had to be 

isolated and subsequently photolized. Recently, Giese and coworkers have shown that 

adamantyl bromide reacts with substituted fumarates in the presence of zinc, triethylamine and 

a catalytic amount of vitamin In the context of our studies of bridgehead radicals,^' we 

evaluated cobalt chemistry and compared methods for radical generation. 

§Kraus, G. A.; Siclovan, T. M.; Watson, B. W. Synlett 1995,201. 
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Our initial studies focussed on bond formation using one equivalent of the bridgehead 

bromide and 1-2 equivalents of the radical acceptor. These studies are summarized in Table 2 

and Figure 7. Bridgehead substrates employed included adamantyl bromide 49, bromo keto 

ester 31** and bromoketone 56.^2 as evidenced from Table 2, bridgehead radicals generated 

by organocobalt intermediates react with a variety of radical acceptors. In general, steric 

h-indrance at the P-position of the radical acceptors attenuated the yields of adducts. In these 

cases, the major product was the reduction product 51. The radical addition reaction could be 

conducted at subambient temperatures, as shown by the reaction of bromide 31 with 

Table 2. Bridgehead radical generation and trapping 

Halide Radical Acceptor Conditions Yield, % Product 

49 dimethyl fiimarate A 56 50 
31 Bu3SnH B 88 51 

31 methyl-vinyl-ketone B 87 52 
31 tributyl-2,4-pentadienyltin B 61 53 
31 cyclopentadiene B (0° C) 47 54 
31 3-acetylcyclohexenone C 21 55 
56 diethyl fumarate B 80 57 

Conditions Halide to Radical Acceptor toB|2 toZn toEt3N ratios Solvent 

A 1.2 1 0.05 11 1.5 DMF 
B 1 1.2 0.05 10 5 DMF 
C 1 1.2 0.05 4 5 DMF 
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49: X=Br 
50: X=CH(C02Me)CH2C02Me 

X 
E O = 

r 
31:X=Br 
51:X=H 
52: XCHjCHjCOMe 
53: X=CH2CH=CHCH=CH2 

54: X= 3-cyclopenteityl 

55 

O 

X' 

—X 

56:X=Br 
57: X=CH(C02Et)CH2C02Et 

EtOjC 
58 

Figure 7. Bridgehead intermediates. 

cyclopentadiene which afforded a better yield at 0 °C. We also examined radical acceptors 

where the resulting radical would be stabilized by a captodative effect. Surprisingly, neither 2-

acetoxyacrylonitrile nor 2-chloroacrylonitrile were effective acceptors. Interestingly, a-

methyl styrene also failed as a radical acceptor. 

We next compared different methods of radical generation. The reaction of bromide 

31 with methyl vinyl ketone using several stannane reagents (BujSnH, AIBN; PhjSnH, AIBN) 

failed to provide diketone 52. The reaction conditions using catalytic vitamin Bjj generated 
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52 in 87% yield. Similarly, stannane reagents could not be used to generate adduct 55 in 

Table 2. The only observable product was the reduction product. 

Adduct 57 was treated with potassium /^rZ-butoxide and magnesium ethoxide to 

produce tricyclic diketone 58 as a 1:1 mixture of diastereomers, in 65% isolated yield. 

Diketone 58 possesses fimctionality suitable for the synthesis of gibberellins which lack the 

C-13 hydroxyl group.^' 

The success of this methodology encouraged us to direct almost all of our research 

effort in this direction. Indeed, suitable reaction partners as well as a common bridgehead 

bromide opened both synthetic pathways leading to either atisine or aconitine type alkaloids, 

while suggesting a very concise synthesis in each direction. Our goal of achieving a very 

effective synthesis seemed also within our reach, warranted by the high yields of these 

coupling reactions. 

Studies directed towards the synthesis of atisine and spiramine alkaloids 

Since atisine and the spiramines alkaloids are closely related to each other, studies 

towards the synthesis of atisine can also be considered as model studies towards the synthesis 

of spiramine alkaloids. 

The low yield of compound 55 and the inefficient trappuig of the nucleophilic, 

sterically hindered bridgehead radicals by the only moderately electron-deficient enones such 

as 59 (Figure 8), prevented us from obtaining compound 60. This would have been one of the 

most direct routes conceivable towards constructing the atisine and spiramine skeleton. 

With compound 52 in hand, the tricyclic core of these alkaloids was constructed as 

indicated in Scheme 20. Compound 61 was thus obtained in 95% yield. 
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One of the issues that became imperative at this point was the selective 1,4-reduction 

of enone 61 with high diastereoselectivity from the face away from the nitrogen atom. In 

addition to this, a way of continuing our chemistry on the cyclohexanone side opposite to the 

bicyclononane system ought to be considered. These restrictions are summarized in 

Scheme 21. 

Figure 8. A direct approach towards a tetracyclic intermediate. 

Introduction of an electron-withdrawing group in compound 62 allows for an easy 

differentiation of the two reactive sites a to the carbonyl group due to the marked difference 

in the acidity of the corresponding protons. Unfortunately, if compound 62 is considered, 

introduction of a carboalkoxy group is the only regioselective reaction known.®"^ In the case 

of compound 61 a variety of options becomes available via the corresponding enolate. The 

question of maintaining the same facial selectivity during enone reduction as in 61 remained 

open at that time. 

Previous investigations involving nucleophilic additions to the bicyclic ketone 31 

provided solid evidence of the steric congestion at the one-carbon bridge in the bicyclononane 

59 60 
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ring system. This was a cause of concern, since many hydride donors which are likely to 

effect conjugate reduction of enones are relatively bulky species. Given the importance of this 

reaction, though, we decided to investigate various conditions which would lead to the desired 

transformation. Some of the most notable, with respect to the results obtained, are given in 

Table 3. 

Table 3. deductions cf compound vl 

Entry Reagent / Conditions Product / Diastereomer ratio Reference 

I LAH + Cul A -2/1 85 
2 LiAlH(0Me)3 + CuI A -2/1 86 
3 LiAlH(0Me)3 A -5/1 87 

4 DroALH A -3/1 88 
5 LAH then BHj then EtCOOH ? 89 

6 BF3 0Et2,NaBH4 A -1/2 37 

7 BF3 0Et2, L-Selectride A -1/1 37 
8 Zn / Vitamin Bjj / AcOH A 90 
9 Bu3SnH, ZnClj, cat. Pd(PPh3)4 starting material 91 

10 TiCl4,Mg/t-BuOH ? 92 

11 Na^SjO^/PTC K-2/1 93 

12 EtjSiH / Wilkinson cat. starting material 94 

13 / Wilkinson cat. starting material 95 

14 Hj / Crabtree cat. starting material 96 
15 / Crabtree cat., 100 psi starting material 96 

16 Hj/RhClj, PTC K -4/1 97 

17 Hj/Pd-C K -1/1 98 

18 H2/Pd-C/2NHC1 starting material 98 

19 H2 / Pd-C / triethylamine, i-PrOH K -4/1 98 

20 Hj/Pd-C/AcOIii-PrOH starting material 98 

21 H2/Co(dmg)PyCl starting material 99 
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Unexpectedly, the equivalent of copper hydride (entries 1 through 3) did not aflford the 

conjugate reduced product, in spite of its efficiency in the case of other systems. The facial 

selectivity m the case of in-situ generated borane reduction was opposite to that observed in 

the copper hydride equivalent reductions (entry 6). A tin hydride, paladium-mediated 

conjugate reduction proved unsuccessful too (entry 9). 

Ruthenium trichloride'®®- or diiron nonacarbonyP'^-pronioted isomerizations of allylic 

alcohols, which proceed with retention of stereochemistry, were not attractive due to the 

difficult separation of the allylic alcohol (A) diastereomers. 

Homogeneous hydrogenations (entries 13 through 15) were probably adversely 

affected by the steric factors mentioned above, resulting in complete recovery of the starting 

material. Eventually, heterogeneous hydrogenation proved to be the method of choice. The 

desired ketone was obtained in quantitative yield, with a satisfactory diastereoselectivity. At 

this point, no attempt has been made to assign the stereochemistry of the major isomer, mainly 

due to the fact that the product mixture proved to be inseparable by FCC. Our previous 

observations on the bicyclic ketone 31, however, strongly supported the hypothesis that 

reduction also occurred preferentially from the less hindered face, namely away from the 

nitrogen atom. It was also noted that the solvent composition influenced the diastereomer 

ratio of the reduction product. 

Our interest in confirming our synthetic route ranked higher in priority over fine tuning 

of the reduction conditions. One of the most direct routes which led to an advanced 

tetracyclic intermediate is depicted in Scheme 22. 

The carbomethoxylation of 64 proceeded in 55% yield with 20% ester exchange. 

Introduction of the double bond via selenium'®^ chemistry afforded the a-unsaturated-P-

ketoester 66, which was subjected to a series of Diels-Alder reactions (Table 4). 

The yields of the desired adducts were much lower than expected. This may be due to 

underestimation of the steric factors when planning the experiments. 
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Scheme 22. 

(MeO)2CO l)PhSeBr,Py 

NaOMe 

Dieb-Alder reactions. Table 4 

Table 4. Diels-Alder reactions of the enone 66 

Diene / conditions Product / yield 

Butadiene / 2M in toluene, 200°C / 24h 
Butadiene, neat, 100°C / 24h 
2-TMSO-butadiene"'' / 2M in toluene, 220°C/ 24 h 
Danishefsky's diene'"'* / 3M in toluene, 200°C / 24 h 

starting material 
starting material 
67" < 5 % 
68», traces 

®for structures, refer to Figure 9. 
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OTMS OTMS 

Figure 9. Structures of compounds 67 and 68. 

An interesting rearrangement was noticed while attempting to prepare a more reactive 

dienophile (Scheme 23). The strong electron withdrawing property of the a-unsaturated-P-

ketoester moiety and the tendency towards aromatization, combined with the electron-donor 

ability of the nitrogen atom favors a bond cleavage yielding an iminium cation and the 

tautomer form of the corresponding phenolate. Ortho attack then generates the rearranged 

compound 70. This constitutes a very direct entry into the isoquinoline class of alkaloids, but 

is of little importance to this project. Previous work on the synthesis of these systems also led 

to the discovery of some notable, although less dramatic rearrangements.'^-

Since our cycloaddition approach was not successful, we decided to construct the 

fourth ring of the target molecules via a 1,4-addition to 66 (Scheme 24). Although the base-

catalyzed addition*"^ of 5-nitro-methylvalerate proceeded in quantitative yield, subsequent 

Dieckmann cyclization attempts resulted only in the recovery of 66 via a retro 1,4-addition of 

the corresponding p-ketoester anion. Attempts to remove the nitro group'®' prior to the 

cyclization reaction also resulted only in the recovery of 66. These results are very unusual. 

The a-acetoxy organozinc reagent'"® failed to add to 66, regardless of whether a 

higher order cuprate was employed or not. The fact that the crotonaldehyde enolate did not 

add was not only unexpected but also in contradiction with previous resuhs reported in our 

group.'"' 
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Scheme 23. 
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2)H202 
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69 

CO,Me 

70 

CO,Me 

Although conjugate addition of lithium diallylcuprate and lithium di-(2-ethoxyvinyl)-

cuprate was essentially quantitative, the directing effect of the amine"" produced the 

undesired diastereomer with a 4:1 diastereoselectivity as evidenced by 'H-NMR studies. 

At this point our attention was attracted by the product obtained as a resuh of 

modifying the reaction conditions for the vitamin Bij-catalyzed addition of the bridgehead 

bromide 31 to methyl-vinyl-ketone (MVK). Thus, if the reaction was conducted in the 

presence of a larger excess of triethylamine and a certain amount of water, controlled aldol 

cyclization of the initially obtamed diketone became possible (equation 5). 

The structure of compound 71 was determined by single crystal X-ray diffraction 

(Appendix 2). Compound 71 was the only diastereomer formed, probably as a result of the 

attack of the zinc enolate only from the bottom face of the carbonyl due to coordination vwth 

the amine group. Although serendipitous, this resuh was initially very encouraging. 
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Scheme 25. 
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Unfortunately, the hydroxy group proved to be very labile (Scheme 25). Irradiation only 

returned starting material although 72 could have been formed as a result of the 

intramolecular quenching of the corresponding iminium ion"' generated by photooxidation. 

Similar experiments performed with compound 83 (page 65), under slightly different 

conditions"^ returned the starting material exclusively. This carbon connectivity was met in 

some of the atisine and aconitine alkaloids and apparently cannot be introduced 

via 71. The most probable cause for the observed lability of the hydroxy group in 71 is the P-

carbonyl functionality; for more than a century it has been known that dehydration of this class 

of compounds to the corresponding a,P-unsaturated carbonyl compound proceeds easily. 

By taking advantage of the steric congestion at the bridge position, compound 73 was 

prepared in 95% yield (Scheme 26). The question that we were seeking an answer for was 

whether radical deoxygenation of 71 would proceed with high diastereofacial selectivity. 
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Scheme 26. 
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Scheme 27. 
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Unfortunately, the concerted Chugaev elimination proved to be much faster than the 

tributyltin radical attack on either the xanthate or the thionocarbonate species, yielding 

compound 76 exclusively. 

In spite of the apparent lack of productivity of the reactions discussed previously, the 

wealth of knowledge about the systems we were trying to synthesize was augmented 

considerably. It is not uncommon in the field of synthetic organic chemistry that the lack of 

reactivity at a particular position in the molecule, although unexpected, was later turned to an 

advantage. Before making any further attempts to construct the fourth ring of our systems 

using either tricyclic intermediate obtained so far, we wanted to investigate two synthetic 

approaches that were suggested by the structure of 52. 

The first one turns the acyclic enone 77, obtained S"om 52 in 75% yield over two 

steps,"' into an acyclic Diels-Alder reaction partner having more degrees of fi-eedom over its 

cyclic counterpart (Scheme 27). 

Although the cycloaddition reactions proceeded in better yields this time, the low 

conversion obtained was unsatisfactory. However, the tetracyclic intermediate 79 was 

obtained for the first time. A possible continuation of the synthetic work would have used the 

dienone 80 as an inverse electron demand Diels-Alder reaction partner, leaving sensible 

questions about facial selectivity to be addressed further. The low yield of 80 made any such 

considerations practically unattractive. 

The second opportunity for constructing four of the five rings present in our target 

molecules is illustrated in Scheme 28. Enone 77 was transformed into diene 81, which reacted 

with methyl-vinyl ketone under moderate conditions to give the corresponding adduct 82 as a 

mbrture of isomers. Although the yields improved constantly along this sequence of attempts, 

one of the main drawbacks of this approach consisted in the unsuccessful control of the 

polymerization reaction of MVK. The large amounts of polymer that accompanied 82 made 

work-up difficult. 
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Scheme 28. 
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Attempts to effect the reaction at lower temperatures by using various Lewis acid catalysts"'' 

turned out to be even more problematic: coordination with the tertiary amine moiety was 

exceptionally strong in all but boron trifluoride cases. However, for the latter compound 

practically no catalytic effect was noted. 
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Micellar c a t a l y s i s , i n  which 7 7  and 3,5-hexadienoic acid or its sodium salt were 

used, gave us but traces of the desired adduct. The use of a Cy or Cg acid would have been 

impractical in our situation. 

Since the acyclic intermediates proved to be of little advantage over the cyclic enone 

species, we decided to return to our previous strategy and to look for a successful way of 

balancing the steric factors by using more reactive intermediates. The steric interactions in the 

cycloaddition step could also be reduced by using a less sterically-demanding diene. We 

decided to run both a model and an appropriately functionalized system simultaneously. Our 

sequence of reactions required that compounds 84 and 86 be made (Scheme 29). 

Scheme 29. 

-Br 

> ^ 

O 

, cat. B,2 

O E 

T 2. t-BuOK,THF 

31:X = H 
83:X = OH 61:X = H 

84 X = OH 
85;X = OMOM 

Compound 31 was obtained previously and was taken to 61 without any incident. 

Similarly, by using ethanolamine in the double Mannich reaction,"^ compound 83 was 

obtained in 80% yield. When our bridgehead radical formation methodology was used in 

order to eflFect the coupling with MVK, no product was formed. Apparently, the catalytic 
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system was poisoned by the bicyclic alkanolamine used. This result was at least curious. 

Even more interesting was the fact that protecting the hydroxy group in 83 as a 

methoxymethyl (MOM) ether""' allowed the desired reaction to proceed in better than 90% 

yield. Cydization to 85 was uneventful, resulting in a 66% overall yield of 85 starting from 

83. Although compound 84 could not be obtained directly, 85 turned out to be a better 

alternative in the long run. An acetyl group was then introduced as a handle to be used in the 

construction of the carbocyclic skeleton of atisine and spiramine alkaloids (Scheme 30). 

Scheme 30. 

LDA, CH3COCN 

"\n̂ o O 

61;X = H 
8S;X = 0M0M 

86:X = H 
87;X = OMOM 

O O O O O 

X = H,OMOM 88:X = OMOM 89:X = OMOM 
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Acylation of the corresponding enone enolate"® with pyruvonitrile at low temperature 

provided 86 and 87 in about 85% yield and 60% conversion. Reduction of the double bond 

under the same conditions used in the case of 61 proceeded with a 2.5 to 1 diastereoselectivity 

in the case when X = H and 2 to 1 in the case of X = OMOM, to give the corresponding 

mixture of isomers in quantitative yield. Initially, the mixture proved to be inseparable by 

FCC. After carefully screening various solvent compositions for their separating ability under 

conditions which would greatly shift the enolization equilibrium in the favor of the enol form, 

separation of 88 and 89 became possible by the technique mentioned above. This way, the 

major isomer 88 became available in pure form in multigram quantities. The relative 

configuration of 88 and 89 was inferred fi"om two-dimensional NMR experiments (COSY, 

NOESY) as weU as APT, HETCOR and NOE data. 

Initial experiments designed to test our synthetic route were performed using 86 as a 

model system and then repeated with the isomer mixture of 88 and 89. Satisfied with the 

resuks, we then subjected the pure isomer 88 to the same sequence of reactions (Scheme 31). 

Introduction of the double bond was effected using the same procedure as for 65. 

Compound 90 was thus obtained in 70% yield. The double bond in 90 proved to be very 

electron-deficient, as evidenced by the singlet at 7.26 ppm present in its ^H-NMR spectrum. 

When 2-methoxy-butadiene"' was used as a Diels-Alder reaction partner, the desired adduct 

91 was obtained. After keeping the reaction mixture for two days at 120°C, the isolated yield 

of 91 was always better than 70%, although conversions ranged only in the 51 to 55%. The 

mbcture of isomers, obtained in a 1.2 to 1 ratio could not be separated at this stage by FCC. 

Several conditions under which selective hydrolysis of the enol ether could be achieved 

without removal of the protective acetal group have been investigated. Finally, it was found 

that a catalytic amount of pyridine p-toluenesulfonate in refiuxing tetrahydrofiirane effected 

the desired transformation with better than 95% selectivity. Base-catalyzed cyclization 

effected the ring closure giving 93 as a mixture of isomers fi'om which 94 could not be 
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Scheme 31. 

1.PhSeBr,Py 

2. HjOj, TFA 

88 
90 

91 

isolated by flash column chromatography (Scheme 32), The separation of 94 and its C6&-epi, 

C\Oa-epi isomer proved to be troublesome even by preparative HPLC. Studies towards a 

better selectivity in the cycloaddition step as well as towards achieving reasonable isomer 

purity for 94 are under way. An interesting epimerization of 92 was noticed under 

equilibration conditions (Scheme 33). At this moment it is not clear yet whether only one of 

the centers shown, or both of them are involved. 
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Scheme 32. 
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For stereoelectronic reasons, epimerization at the 10a position, implying ring closure of a 

decentrione, is less likely. The evidence that we have so far, however, is only circumstantial. 

Due to the complexity of the NMR data, we attempted an X-ray structure elucidation. In the 

case of these more complex substrates, obtaining the proper crystalline materials proved to be 

tedious. When the sequence of reactions shown in Schemes 30 through 32 was applied to 

compound 86, a crystalline material was obtained following purification by FCC. 

Unfortunately, it could not be obtained in a form suitable for X-ray structure determination. 

Removal of the MOM protective group in compound 92, as well as in 93, resulted in the 

formation of the corresponding primary alcohols which were then esterified with p-

bromobenzoyl chloride. 
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BH' 

No crystals suitable for X-ray structure determination could be obtained, in spite of employing 

a variety of conditions under which selective crystallization was likely to occur. Surprisingly, 

attempts at separation by preparative HPLC were again futile. 

Compound 94 contains the skeleton of the the atisine and spiramines alkaloids 

together with appropriate functional groups to allow for a convenient generation of several 

members of these genera. Barton deoxygenation'^" of 93 gave compound 95 for which the 

introduction of the double bond present in the natural compounds should be facilitated by the 

fact that one of the positions a to the carbonyl is less hindered than the other one 

(Scheme 34). 
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Scheme 34. 
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Attempts to control the facial selectivity of the cycloaddition reaction were not 

successful yet. An elegant approach would have used the hydroxyl functionality masked in the 

endione 90 in order to tether the diene moiety and thus force it to reach the reactive site fi-om 

one face only. The desired configuration at the new carbon centers formed would have been 

identical to that present in the natural compounds regardless of whether the cycloaddition 

reaction proceeded via an exo or an endo transition state (Scheme 35). Molecular modelling 

calculations indicated that for the tether shown there would not be insurmountable steric 

barriers and that the presence of the silicon atoms influenced the flexibility of the tether chain 

quite favorably. Unfortunately, several attempts to prepare compound 97 failed to yield a 

clean product. Other tethers considered initially were later dismissed for reasons of thermal 

and hydrolytic stability. The use of the equivalent of a 1-siloxy-butadiene would not have 

precluded us from completing the synthesis of these classes of compounds since ring closure 

could have been effected, for instance, via an SNj process on the corresponding mesylate. 

Given the fact that the corresponding 2-siloxy-butadiene tether would have been 

considerably more diflBcuk to prepare than its 1-siloxy counterpart, any attempts to make use 

of this strategy were halted at that time. 
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A possible strategy which would have allowed for the introduction of a methyl group 

which in turn could have been transformed into the corresponding methylene functionality has 

been briefly examined (Scheme 36), 

Thus, the same sequence of reactions that led us to the successful construction of 95, 

this time substituting 2-oxo-butyronitrile for pyruvonitrile in the acylation step would give 98 

as an intermediate, and 99 as a preliminary target compound. Although deox>'genation should 

proceed in good yield, the previous base-catalyzed cyclization would have had to overcome a 

sensibly more sterically hindered transition state. With this concern in mind and a number of 

issues yet to be addressed in the previous route, we postponed further investigations in this 

direction. At this point it is only worth mentioning that the compounds 101 which could be 

obtained by the reduction of 100 are naturally occurring compounds by themselves (see also 

Appendix 1). 

In conclusion, the carbocyclic skeleton bearing the appropriate functionality and 

configuration of the stereogenic centers of the atisine and spiramines alkaloids has been 

synthesized following a 13 step sequence starting with the commercially available ethyl-2-oxo-

cyclohexanecarboxylate. Further manipulation of the present functional groups allows for a 

convenient and very direct access to many of the compounds comprising these classes of 

diterpene alkaloids. Although the most direct route known so far, better stereo control in 

some of the key steps is needed for an improved overall yield. 

Studies directed towards the synthesis of aconitine type alkaloids 

Based on our considerable experience acquired while studying the synthesis of atisine 

type alkaloids, we decided to pursue a similarly direct route which would also contribute more 

examples to our successful bridgehead radical chemistry. We began by preparing compound 

103 (equation 6) and then subjecting it to various organometallic reagents under conditions 
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that would allow for as good a regioselective addition as possible (Table 5). Enone 102 was 

obtained in excellent yield following a very mild exo-methylenation'^i of 3-methoxy-2-

cyclohexen-l-one. Our efforts were initially focused on devising a method of effecting a ring 

closure in 103, by using both its carbonyl functions in order to obtain a tetracyclic 

intermediate, leaving stereochemical issues, such as epimerization of the center a to the 

carbonyl, to be addressed at a later stage. 

Compound 103 was indeed obtained in excellent yield (92%) by using our standard 

procedure. Although we expected the ketone functionality present in 103 to be considerably 

more reactive than the vinylogous ester, in practice the steric factors at the carbonyl position 

decreased its reactivity so as to almost match that of the less hindered and more electron-rich 

vinylogous ester (Table 5). 

Introduction of an acetyl group equivalent on 31 by using 2-propenyl-magnesium 

bromide was unsuccessfiil, probably due to excessive steric hindrance. Interestingly, 36 did 

not hydrate to 104 even when a variety of reagents and conditions was employed,'" nor did it 

undergo a Rupe rearrangement (Scheme 37). 

O 

Bi2, Zn, EtjN 
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Table 5. Organometallic additions / reductions of 103. 

Reagent Product / Comments 

TMS—^—Li -1/1 nMxture of the two mono-adducts 

TMS—^—MgBr -1/1 mixture of the two mono-adducts 

TMS—^ CeClj -1.5/1 mixture of regoisomers 

Li 

- 1 . 2 / 1  m i x t u r e  o f  r e g j o i s o m e r s  

o - 1.4 /1 mixture of regioisomers 

NaBH, 

LiAIH(0tBu)3 

no selectivity, conrolete reduction 

low selectivity, con5)lete reduction 

- 20% mixture of alcohols + starting mat. 
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Scheme 11. 

J 36 

no %(iration with; 

Hg0/H2S04 
HgS04 

/ Dowex 
conc. HCl 
Co2(CO)8 / NaBH4 / Fe(N03)3 

OH 
-Br 

Scheme 38. 

PdCyCuCl/Oj 
complex nixture 

O 
102 

OH 

105 

OH 
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Compound 104 was however separated in low yield from the complex mixture 

obtained while treating 36 with phenylmercuric hydroxyde. A Wacker oxidation'^s of 41 

also resulted in the formation of a complex mixture (Scheme 38). Although it has been 

reported that some allylic alcohols do not respond well when subjected to this procedure we 

reasoned that the bridgehead bromide may be a source of additional interference. 

Interestingly, when compound 41 was subjected to our bridgehead radical-forming conditions 

in the presence of enone 102, the spiro compound 105 was obtained in high yield, conceivably 

as a resuh of the addition of the expected intermediate radical species to the allylic double 

bond in a 1,6-endo-trig cyclization. Apparently both isomers bearing opposite configurations 

at the spiro carbon center were formed with no significant selectivity. 

Due to our interest in effecting the seven-membered ring closure leading to an 

advanced aconitine type intermediate, an indirect route to compound 107 was sought 

(Scheme 39). Unfortunately, the conceptually elegant intramolecular Wittig reaction resulted 

in the formation of an unidentified product instead of our desired tetracyclic intermediate. 

An alternative route was then envisaged, in which one would not rely on 

differentiation between the two carbonyl groups of 103 anymore. For this purpose, 

compound 109 had to be prepared (equation 7). 

®12' Et3N 
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Scheme 39. 

0 
102 

OH 

r 
E-  ̂

65-70% yield, + 20-25% of 
unidenlified product 

106 
H, / Lindkir cat. 

2)NaH 

, unidertified 
product 

Although we were initially concerned about the poisoning effect on the catalyst 

encountered with the free alkanolamine used in the spiramine series, compound 109 was 

obtained in excellent yield as a mixture of separable diastereomers. Organometallic additions 

to 109 failed completely regardless of the nature of the reagent used. We assumed that 

deprotonation of the enone moiety by the alkoxide formed as the first equivalent of reagent 

was added, was so effective that no electrophillic substrate was left to react with the second 

equivalent of the organometallic reagent used. For this reason, protection of the secondary 

alcohol was necessary. We chose a methoxymethyl (MOM) group again, due to the fact that 

its removal could be effected under the same acidic conditions employed in the rearrangement 

of the 3-methoxy tertiary allylic alcohol resulted from nucleophillic additions to the enone 

moiety of 110 (Scheme 40). 
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Addition of ethynyl magnesium bromide to 110 failed again, but when trimethylsilyl-

ethynyllithium was used instead the desired adduct was formed in quantitative yield. Although 

both deprotection and rearrangement of 111 proceeded smoothly, hydration of the triple bond 

to the corresponding acetyl group could not be achieved; only 112 was obtained instead 

(Scheme 41). 

In order to overcome these difficulties, l-ethoxyvinyllithium'^s had to be used as an 

acetyl anion equivalent (equation The desired compound 113 was obtained in 90% 

yield. 

Scheme 40. 

E 3 eqiriv. HC^^CMgBr 
<20% product+ staitingiTiateiial 

110 •Li 

then BU4NF 

111 

111 
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Scheme 41. 

Nalfion-H 

111 or 

cat. HCl, THF, r.t. 

J 

Interestingly, compound 113 proved to be stable to neutral silica. Rearrangement and 

simultaneous deprotection of 113 occurred rapidly following treatment with a catalytic 

amount of hydrochloric acid in tetrahydrofiirane at room temperature (eq. 9), however, 

oxidation of the hemiketal 114 thus formed proved to be extremely difficult (Table 6). 
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Table 6. Oxidation of compound 114 

Reagent / conditions product / comments reference 

FCC / Celite starting material 128 
FCC / Celite, AcONa ~ 30% s.m. + tan- 129 
FhCOPh, tBuOK / FhH, reflux starting material 130 
Al(0iPr)3, acetone, reflux^^s starting material 131 
DMSO, TFAA, EtjN starting material 57 
Jones reagent starting material + tan- 132 

The stability of the hemiketal 114 is indeed remarkable. While preventing us from 

reaching an all-carbon frame tetracyclic intermediate suitable for the synthesis of aconitine 

type alkaloids, it also suggests that such a structure can be made following a less favorable 

cyclization in which a seven-membered ring is formed in the key step. The difSculties 

encountered so far could be overcome if oxidation of the secondary alcohol precedes the 

enone-forming rearrangement. A suitable alternative would employ a protective group that 

can be removed under basic or neutral conditions, as indicated for compound 115 (Figure 10). 

X:OTMS 
OTBS 

OCOCOPh 

Figure 10. With appropriate "X" unmasking the keto group can precede 
rearrangement 
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Upon effecting the ring closure, intermediate 116 would be obtained with promise for 

an even more advanced pentacyclic intermediate such as 117 in sight (Figure 11). Even at the 

present stage, considerable progress has been made in this direction. For a quick reference, 

the structure of one of the target compounds has been given, enclosed in a rectangle. Given 

the fact that no work has been reported towards the total synthesis of aconitine alkaloids, 

further research in this area is justified and promises to return interesting results. 

E 

OH 
116 

117 

HO, 
OMe 

OMe 
OH 

Figure 11. Intermediates accessible via the proposed route, together with one of the 

target compounds. 
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EXPERIMENTAL 

Unless otherwise noted, materials were obtained from commercial suppliers and were 

used without purification. H;EA refers to hexanesiethyl acetate solvent mixtures for thin layer 

chromatography (TLC) and silicagel flash chromatography (SGC). Commercially available 

silicagel (40|im) was used as stationary phase. The NMR spectra were recorded at 300 MHz 

and the purity of all title compounds was determined to be > 95% by this method. The 

following symbols were used to designate peak multiplicity; s (singlet), d (doublet), t (triplet), 

q (quartet), qv (quintet), ABq (AB quartet), m (multiplet). Combinations, such as dt should 

read "doublet of triplets". 

General procedure for the bridgehead generation/trapping sequence: A10 mL flask 

was charged with vitamin Bu (23 mg, 16.4 |imoles), activated zinc (220 mg, 3.38 mmol), 1.4 

mL of dimethylformamide (DMF), 30 |aL of water and a stirring bar. The mixture was 

degassed and stirred vigorously under argon at room temperature until the color turned 

emerald green. A degassed solution of the bridgehead bromide (0.34 mmol), radical acceptor 

(0.67 mmol) and triethylamine (0.24 mL, 1.7 mmol) in 0.9 mL of DMF was added dropwise 

and the mixture was stirred at room temperature for 12-24h. The excess zinc was removed by 

filtration. To the solution were added 2.5 mL of water and 0.5 mL of ammonium hydroxide 

6M solution. The mixture was extracted with ethyl acetate. The organic layer was washed 

with water, dried over anhydrous sodium sulfate and concentrated. The residue was purified 

by flash chromatography, using H;EA as eluent. 

Ethyl 5-bromo-3-(2-hydroxyethyl)-9-oxo-3-azabicyclo[3.3.1]nonane carboxylate 

(83); To a mixture of freshly distilled 6-bromo-2-carboethoxy-cyclohexanone (2.49 g, 10 

mmol) and formaldehyde (1.67 g of 37% wt. solution, 20.2 mmol) in 50 mL absolute 

methanol was added ethanolamine (0.61 g, 10 mmol) and the mixture was kept at room 
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temperature for two days. A cleaner reaction mixture was obtained in the presence rather 

than the absence of air. The mixture was concentrated, and the brown oil was taken in 20 mL 

IN HCl and extracted with ethyl ether. About 0.4 g of the starting bromo derivative could be 

recovered. The aqueous layer was neutralized with solid sodium carbonate, saturated with 

brine, and extracted with ether. The dried extract was concentrated and purified by SGC with 

H:EA 2.5:1 to 1.5; 1 to give 2.1 g of83 (64%) as a colorless oil. MS. m/e calcd. for 

Ci3H2oN04'9Br; 333.05757, measured: 333.05800. MS m/e calcd. for C,3H2oN04«iBr: 

335.05565, measured: 335.05491. MS m/e: 335.1,333.1, 304.0, 302.0,276.0,254.1,222.1, 

208.1, 180.1,152,1, 122.1, 93.1, 79.1, 56,1, 42,0, 'H-NMR (400 MHz, CDClj); 5 1,29 (t, 7 

= 7.8Hz,3H), 1.69 (qvt,J = 6.4, 2.0 Hz, IH), 1.75-1.95 (m, IH), 2.28 (ddt, 14.4, 6.0, 

2.0 Hz, IH), 2.5-2.7 (m, 3H), 2.8 (ddt, J = 14.3, 6.0,2.0 Hz), 2.82-3.05 (m, IH), 3.08 (dd, J 

= 11.2,2.0 Hz, lH),3.17(dd,y= 11.6,2.0 Hz, IH), 3.29(dd, J= 11.8,2.4Hz, 1H),3.64 

(dd, y = 11.2, 2.4 Hz, IH), 3.73 (t, J = 2.4 Hz, 2H), 4.23 (q, J = 7.8 Hz, 2H); "C-NMR (400 

MHz, CDClj): 5 13.74, 22.57, 35.80, 45.80, 57.85, 58.94, 59.53, 61.16, 61.28, 68.68, 68.76, 

169,32,201.67. IR(neat); cm-i 715, 859,1013,1262,1440,1712,2818,2935, 3200-3600 

broad. Rt(H:EA 2/1) 0.36. 

Ethyl 5-broino-3-(2-(methoxyinethyloxy)-ethyI)-9-oxo-3-azabicyclo-[3.3.1]-

nonane carboxylate (83a): To the aminoalcohol 83 (1.5352 g, 4.6 mmol) in 15 mL dry 

(CaHj) methylene chloride were added diisopropylethylamine (2.56 mL, 13,8 mmol) and the 

mixture was cooled at 0°C in an ice bath. Freshly distilled methyl-chloromethyl ether (0.95 

mL, 12.5 mmol) were added dropwise, under vigorous stirring. The mbcture was warmed to 

room temperature, stirred overnight, and partitioned between methylene chloride and a 

saturated solution of NaHCOj. The aqueous layer was further extracted with methylene 

chloride, the combined organic layers were dried over Na2S04 and concentrated. The crude 

reaction mixture was flushed through a 1.5 in. pad of silicagel, using H:EA (3:1) to give 1.65 

g (95%) of 83a, as a colorless oil. MS m/e calcd. for CijH24N05'^'Br: 377.08378, measured: 
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377.08378. MS m/^ calcd. for C,5H24N058'Br: 379.08187, measured: 379.08214. M Sm/e :  

379.1,377.1,304.0,302.0,252.1,222.1, 150.1, 122.1,86.1,56.1. iR-NMR (CDCI3): 6 1.29 

(t,J=7.2 Hz, 3H), 1.61 (qvt,J=6.6, 1.8 Hz, IH), 2.25 (ddt,J= 15.0,5.8, 2.0 Hz, IH), 

2.5-2.62 (m, 4H), 2.66 (t, J = 5.6 Hz, 2H), 2.78 (ddt, J = 14.8, 5.9, 2.0 Hz, IH), 3.21 (d, J = 

2.8 Hz), 3.27 (d, J = 3.0 Hz), 3.31 (d, J = 3.0 Hz), 3.06-3.35 (m, 3H), 3.38 (s, 3H), 3.67 (t, J 

= 5.7 Hz, 2H), 4.23 (q, J = 7.5 Hz, 2H), 4.64 (s, 2H). "C-NMR (CDCI3): 6 13.97, 22.66, 

36.22, 46.20, 55.24, 55.56, 59.90, 61.45, 61.61, 65.26, 69.00, 69.17, 96.44, 169.59, 201.78. 

m. (neat) cm-i; 702, 917, 1041,1112, 1260, 1456, 1728, 1738, 2822, 2934, 2983. Rf (H:EA 

4:1)0.5. 

Ethyl 3-(2-(methoxymethyloxy)-ethyI)-5-(3-oxobutyl)-9-oxo-3-azabicycIo-[3.3.1]-

nonane carboxylate (52a). The general procedure outlined above was employed. Thus, the 

crude reaction mixture obtained from 12.129 g bromide 83 (32.25 mmol) gave upon SGC 

(H:EA 2:1), 9.6 g (82%) of 52a as a light yellow oil. MS m/e calcd. for CijHjjNOg: 

369.21514, measured: 369.21447. MS m/e\ 369.2, 312.2,294.2,248.1, 179.1, 121.1, 86.1, 

45.0. iH-lSIMR (400 MHz, CDCI3): 5 1.28 (t, J = 7.2 Hz, 3H), 1.48-1.72 (m, 4H), 1.82 (m, 

IH), 2.04 (dqv, J = 16.0,2.0 Hz, IH), 2.14 (s, 3H), 2.21 (dqv, J = 15.8, 2.0 Hz, IH), 2.4-

2.56 (m, 3H), 2.6 (td, J = 8.0, 0.8 Hz, 2H), 2.86-3.0 (m, IH), 3.03 (dd, J = 14.8,2.0 Hz, 

lH),3.07(dd,J= 11.8, 1.8Hz, 1H),3.22 (dd,y= 11.8, 1.8 Hz, IH), 3.37 (s, 3H), 3.67 (t,7 

= 8.0 Hz, 2H), 4.21 (q, J = 7.2 Hz, 2H), 4.64 (s, 2H). "C-NMR (400 MHz, CDCI3): 5 

14.00, 20.21, 28.29,29.72, 36.66, 38.22, 39.32,48.79, 55.14, 56.29, 58.94, 61.02, 62.23, 

65.36, 65.41, 96.39, 170.88, 208.30,212.54. IR (neat), cm-i: 918,1040,1112, 1258,1441, 

1469,1715, 1732, 2821, 2933, 2982. (H:EA 2:1) 0.38. 

Ethyl IH, 3H, 4H, 6H, 7H, 8fl-2-(2-(methoxymethyIoxy)-ethyl)-6-oxo-4,8a-lll-

propanoiso-quinoline 4-carboxyIate (85): In a flame-dried flask were placed 52a (9.406 g, 

25.5 mmol) and 250 ml dry (benzophenone ketyl) THF. Potassium /er/-butoxide (2.28 g, 20.3 

mmol) was added at 0°C under dry argon, and the dark yellow solution was kept in the 
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refrigerator overnight. The mixture was neutralized with aqueous saturated ammonium 

chloride solution at 0°C, separated and the aqueous layer was extracted with ethyl acetate. 

The combined organic layers were dried, concentrated and the crude product was flushed 

through a 2 in. pad of silicagel using H:EA 2.1 as eluent. Compound 85 ( 8.06 g, 91 %) was 

obtained as a light yellow oil. MS m/e calcd. for CigHjgNOj: 351.20457, measured: MS 

m/e: iR-NMR (CDCI3): 5 1.29 (t, J = 7.5 Hz, 3H), 1.56 (qvt, J = 6.6,2.0 Hz, IH), 1.65-

1.84 (m, 3H), 1.92-2.15 (m, 2H), 2.17-2.5 (m, 4H), 2.54 (td, J = 6.0,1.5 Hz, 2H), 2.80 (dd, J 

= 4.8, 1.5 Hz, IH), 2.95(dd,y= 11.0, 0.8 Hz), 2.89-3.08 (m,2H), 3.14 (dd, J = 11.5, 1.2 

Hz, IH), 3.38 (s, 3H), 3.66 (t, J = 6.0 Hz, 2H), 4.20 (qd, J = 7.2, 1.5 Hz, 2H), 4.64 (s, 2H), 

5.66 (s, IH). "C-NMR (CDCI3); 6 14.12, 20.56, 32.97, 33.38, 36.76, 37.67,38.34, 52.05, 

55.25, 56.94, 61.20, 61.92, 65.36, 66.86, 96.52, 120.75, 167.35, 172.58, 198.96. IR(neat), 

cm-i: 748, 915,1041, 1248, 1614, 1672, 1728,2821, 2930,2983. 

Rf(H:EA2:l), 0.38. 

Ethyl 2H, 3H, 4H, 6H, IH, 8^l-7-acetyI-2-(2-(niethoxymethyloxy)-ethyl)-6-oxo-

l^-4,8a-propanoisoquinoline-4-carboxylate (87). To a flame-dried, argon-flushed flask 

were added dry (benzophenone ketyl) THF (17 mL) and dry (CaHj) diisopropylamine (0.7 

mL, 4.7mmol). The mixture was cooled at -10°C, and2.0mLofbutyllithium(2.38M 

solution in hexanes) were added via syringe. After stirring for 1/2 h at -10°C, the mixture was 

cooled at -78°C and a solution of the enone 85 (1.3751 g, 3.91 mmol) in THF (6 mL) was 

added dropwise. The flask containing compound 85 was rmsed with 7 mL THF and this 

solution was transferred to the reaction flask via canula. The reaction mixture was stirred for 

1/2 h at -78°C, warmed to 0°C for 5 min then quickly cooled to -78°C. Freshly distilled, dry 

pyruvonitrile (0.32 mL, 4.3 mmol) was added over 5 min, immediately followed by dry 

hexamethylphosphoramide (HMPA, 0.76 mL). The mixture was stirred at -78°C for 1 h, 

warmed to -10°C and stirred at this temperature overnight. To the cold mixture was added a 

saturated solution of ammonium chloride and the pH was adjusted to 7-7.5 with NH4OH. 
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The mixture was extracted with ethyl acetate, the extract was dried, concentrated and purified 

by SGC (H;EA 6:1 to 2:1). Compound 87 (light yellow oil, 981 rag, 64%) eluted first, 

followed by 85 (432 mg, 31%). Compound 87 is in equilibrium with its tautomer. MS m/e 

calcd. for CjiHjiNOg: 393.21514, measured: 393.21416. MS m/e: 362.2, 318.2,272.1, 

244,1, 187.1, 132.1, 86.1,43.0. 'H-NMR (CDClj): 5 1.29, 1.30 (t, 7= 7.2 Hz, 3H), 1.52 

(qvt, J = 6.5, 2.0 Hz, IH), 1.65-1.75 (ra, IH), 1.86-2.09 (m, IH), 2.04 (s, 3H), 2.08-2.40 (m, 

6H), 2.54 (td,y = 5.9, 1.2 Hz, 2H), 2.80 (dd,7= 10.8,1.8 Hz, IH), 2.82-3.05 (m, 3H), 3.14 

(dd, J = 11.1, 0.9 Hz, IH), 3.38 (s, 3H), 3.663, 3.658 (t, J = 6 Hz, 2H), 4.21,4.20 (q, J = 

7.2 Hz, 2H), 4.64 (s, 2H), 5.67, 5.68 (s, IH), 15.80 (s, corresponding to 0.72 H). i^C-NMR 

(CDCI3); 6 13.95, 13.97, 20.51, 20.81, 34.47, 37.87, 38.98, 40.05, 51.95, 55.04, 56.79, 

60.97, 61.61, 65.17, 66.57, 96.32, 100.74,118.44, 164.40,172.39,183.14,183.64. IR 

(neat), cm-i; 733, 917,1040,1108, 1253, 1464, 1623, 1669,1727, 2821, 2929, 2980. Rf 

(H;EA 2:1)0.35. 

Ethyl 4a-(a) 2H, 4H, 4aH, SH, 6H, IH, 8ff-7-acetyl-2-(2-inefhoxymethyI-

oxy)-ethyl)-6-oxo-lH-4,8a-propanoisoquinoline-4-carboxylate (88) and 4a-(p) Ethyl 2H, 

3H, 4H, 4afl, SH, 6H, IH, 8fl'-7-acetyl-2-(2-methoxymethyloxy)-ethyl)-6-oxo-l//-4,8a-

propanoisoquinoline-4-carbo:^late (89); To a flask containing the endione 87 (1.193 g, 

3.036 mmol) were added 30 mL isopropanol, 10 acetic acid and the flask was flushed with 

argon. Palladium on carbon (120 mg, 10% Pd) was then added, and a hydrogen atmosphere 

(normal pressure) was maintained for 24 h. The reaction mixture was filtered under argon, 

the precipitate was washed with isopropanol and the crude reaction mixture was concentrated 

to give a mixture of 88 and 89 in a 2.6 to 1 ratio, as a colorless oil. MS m/e calcd. for 

CjiHjjNOg; 395.23079, measured: 395.23041. MS m/e. 395.2,352.2, 320.2, 246.1,203.1, 

132.1, 86.1, 58.1, 42.9. >H-NMR (CDCI3): 5 1.25 (t, J = 7.2 Hz, 3H), 1.42-1.72 (m,2H), 

2.11 (s), 1.80-2.14 (m, 7H), 2.49 (t, J = 6.0 Hz, 2H), 2.20-2.60 (m, 6H), 2.65-2.80 (m, IH), 

3.15 (d, 7 = 9 Hz, IH), 3.28 (d, J = 8.0 Hz, IH), 3.38 (s, 3H), 3.64 (t, 7 = 6 Hz, 2H), 4.10 
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(q, J = 7.5 Hz, 2H), 4.64 (s, 2H), 15.72, 15.83 (s, total 0.8H). i^C-NMR (CDCI3): 6 12.45, 

14.14, 19.94, 25.12,25.38, 28.44, 28.84, 32.50, 36.41, 39.72, 45.72, 55.14, 55.19, 57.60, 

60.59, 63.33, 65.30, 67.61, 96.44,104.52,174.85, 179.79, 199.14. IR(neat), cm-': 741, 920, 

1042, 1110, 1258,1472, 1725, 2820, 2930, 2980. 

Compounds 88 and 89 were separated by SGC on a 8 in. column, using benzene: 

isopropanol:ethyl acetate:acetic acid 60:3:2:0.54. 

General procedure for the introduction of the double bond in 88 and 89: To a cold 

(0°C) solution of diphenyl diselenide (148 mg, 0.47 mmol) in 11.3 mL methylene chloride was 

added a freshly prepared solution of bromine in methylene chloride (0.46 mL 1.0 M). After 

stirring for 10 min., pyridine (80 |xL, 0.99 mmol) was added and the mixture was stirred at 

0°C for 20 min. The diketone (312 mg, 0.79 mmol) was slowly added as a solution in 

methylene chloride. The mixture was stirred at 0°C for 6 h, concentrated, and the excess 

pyridine was removed under reduced pressure (10-20 mtorr). The residue was partitioned 

between water and methylene chloride and the aqueous layer was extracted with methylene 

chloride. The combined organic layers were dried, concentrated, and any trace of pyridine 

was removed under vacuum. The residue was taken in methylene chloride (12 mL), and 

trifluoroacetic acid ( 75 |jL) was added at 0°C, followed by hydrogen peroxide (0.35 mL 

30%, in three portions at 10 min. interval) under vigorous stirring. Sodium sulfite (0.5 mL 

saturated solution) was added and the mixture was stirred for 20 min. Upon neutralization 

(ammonium hydroxide 6M), partitioning between water and methylene chloride and extraction 

of the aqueous layer with methylene chloride, the crude product was purified by SGC using 

H:EA 5:1 as eluent to give the corresponding endione (245 mg, 79%) as a colorless oil which 

rapidly turns orange upon exposure to air. 

Ethyl 4a-(a)-2ff, ZH, 4H, 6H, IH, SH, 7-acetyl-2-(2-(niethoxyinethyloxy)-ethyl)-

6-oxo-lH-43a-propanoisoquinoiine-4-carboxylate (90): MS m/e calcd. for 

393.21514, measured: 393.21508. MS m/e: 393.2, 333.2,290.2,260.2,170.1,149.1,91.1, 
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72.1, 42.6. 'H-NMR (CDClj): 6 1.26 (t, J = 7.5 Hz, 3H), 1.42-1.68 (m, 3H), 1.70-2.03 (m, 

3H), 2.21-2.31 (m, IH), 2.36 (ABq, J = 18.6, 4.2 Hz, IH), 2.46 (s), 2.41-2.67 (m, 8H), 2.80 

(nonet, J = 6.6 Hz, IH), 3.08 (ABq, J = 12.0, 11.4 Hz, IH), 3.37 (s, 3H), 3.64 (t, J = 5.7 

Hz, 2H), 4.14 (q, J = 12 Hz, 2H), 4.63 (s, 2H); IH is at 6 7.26 ppm. iH-NMR 

(CD3COCD3): 8 1.23 (t, J = 7.2 Hz, 3H), 1.58-1.75 (m, 3H), 1.92-2.02 (m, 2H), 2.33 (s), 

2.12-2.32 (m,6H), 2.53 (t,y= 6.0Hz), 2.42-2.52 (!n,3H), 2.70(dd,y= 17,4,15,0Hz, IH), 

2.80 (s), 2.73-2.93 (m, IH), 3.10 (d, 7 = 10.8 Hz, IH), 3.23 {i,J= 10.5 Hz, IH), 3.30 (s, 

3H), 3.63 (t, J = 6.0 Hz, 2H), 4.13 (q, J = 7.2 Hz, 2H), 4.58 (s, 2H), 7.19 (s, IH). "C-NMR 

(CDCI3): 6 14.02, 20.82, 25.41, 29.58, 30.52, 36.32, 36.60, 42.17, 45.20, 55.04, 57.18, 

60.73,62.15, 63.08,65.03, 96.29,137.62, 161.25, 173.86,196.12, 198.20. IR(neat), cm*'; 

728, 923,1035,1110,1258,1635,1672,1728, 2820, 2930, 2980. (H:EA 2:1) 0.42. 

Ethyl 4a-(a), 6a-(a), 10a-(a)-2fl, 3fl, 4H, 4aH, SH, 6H, 6aH, IH, IQH, 10afl-6a-

acetyl-2-(2-(methoxymethyloxy)-ethyl)-9-methoxy-6-oxo-l/f-440b-propano-

benz[h]isoquinoIine-4-carboxylate and Ethyl 4a-(a), 6a-(P), 10a-(P)-2H, 3H, 4H, 4»H, 

5H, 6H, 6aH, IH, \0H, 10ai?-6a-acetyl-2>(2-(methoxymethyloxy)-ethyl)-9-methoxy-6-> 

oso-l/f-4,10b-propanobeiiz[h]iso-quinoline-4-carboxylate (91); To a dry pressure reactor 

were added endione 90 (419 mg, 1.066 mmol), 2-methoxybutadiene (1.1 mL), and 

hydroquinone (2 mg). The reactor was flushed with dry argon, sealed and kept at 120°C for 

40h. The solvent was distilled under reduced pressure and the residue was purified by SGC 

(column neutralized with 1% triethylamine in hexanes, H;EA 2.5:1 as eluent) to give the 

corresponding adduct, as a 1.2 to 1 mixture of isomers (346 mg, 68%), colorless oil. MS m/e 

calcd. for CjgHjjNO,: 477.25265, measured: 477.27289. MS m/e\ 462.2,434.3,402.2, 

345.2, 294.2, 243.2, 179.6, 97.1, 58.1. iH-NMR (CDCI3): 8 1.24 (t, J = 7.2 Hz, 3H), 1.28-

1.63 (m, 4H), 2.17 (s), 2.18 (s), 1.75-2.31 (m, 12H), 2.50 (t, J = 6.0 Hz), 2.33-2.65 (m, 4H), 

2.75-2.95 (m, 2H), 3.15 (broad s, IH), 3.36 (s, 3H), 3.54 (s, 3H), 3.65 (t, J = 6.0 Hz, 2H), 

4.10 (qd, J = 7.2, 3.0 Hz, 2H), 4.62 (s, 2H), 4.74 (broad s, IH). i^C-NMR (CDCI3): 12.46, 
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14.15, 20.56, 24.12, 25.65, 25.92, 29.89, 31.93, 37.16, 38.83, 39.22, 45.85, 45.89, 54.02, 

55.19, 55.20, 57.77, 60.33, 60.70, 62.86, 63.43, 64.89, 65.43, 91.87, 96.45, 96.51, 156.71, 

174.70, 207.14, 209.56. IR(neat), cm-i; 733, 916, 1041, 1256, 1362, 1445, 1464, 1667, 

1690, 1717, 2824, 2935, 2983. 

Ethyl 4a-(a), 6a-(a), I0a-(a)-2fl, 2H, 4H, 4aH, SH, 6H, 6a//, IH, SH, lOH, 

lQaf/~6a-acety!-6,9-dio50-2-(2-(n!etho5y!nethy!o5y)-ethyl)-4,10b-propano-

benz[h]isoquiuoline-4-carboxyIate and Ethyl 4a-(a), 6a-0), lOa-(p)-20,3H, 4Hy 4aH, 

5H, 6H, 6aH, 7H, SH, lOH, 10afl-6a-acetyl-6,9-dioxo-2-(2-(methoxymethyloxy)-ethyl)-

4,10b-propano-beiiz[h]isoquinoline-4-carboxylate(92); To compound 91 (43.7 mg, 91.6 

Hmol) dissolved in 1 mL THF, was added pyridine para-toluenesulfonate (PPTS, 22 mg, 87.6 

Hmol) and water( 18 |J., 1 mmol). The mixture was refluxed for 6 h. Saturated NaHCO, 

solution (0.25 mL) was added, and the mixture was extracted with ethyl acetate. The dried 

organic layer was concentrated under reduced pressure and the residue was purified by SGC 

(H:EA 1.5; 1) to give 92 and 92a (39 mg, 92%) as a colorless oil. MS m/e calcd. for 

CJ5H37NO7: 463.25700, measured: 463.25576. MS m/e: 432.2, 388.2, 346.2, 229.1,132.1, 

58.1. iH-NMR(400MHz,CDCl3):6 1.26(t,y=7.2Hz,3H), 1.33-1.39 (m, IH), 1.51-1.74 

(m, 4H), 1.74-1.92 (m, 2H), 2.24 (s), 2.10-2.57 (m, 14H), 2.62-2.78 (ra, 2H), 2.83-3.04 (m, 

2H), 3.36 (s, 3H), 3.60 (t, J = 6.0 Hz, 2H), 4.3 (two overlapped qd, J = 7.2,4.0 Hz, 2H), 

4.61(s, 2H). "C-NMR (300 MHz, CDCI3): 6 14.12, 20.68, 25.49, 25.61, 29.59, 31.69, 

36.06,37.04,38.80, 39.09,40.34,46.11, 47.85, 55.15, 57.66, 60.87, 62.93, 63.64, 65.19, 

65.43, 96.40, 174.08, 206.04, 208.84, 210.09. 

Ethyl 4a-(a)-2H, 3fl, 4H, 4aH, 5H, 6H, 6aH, SH, 9H, lOH, 10aH-6,7-dioxo-9-

hydroxy-2-(2-(inethoxymethylosy)-ethyl)-lfl, 7ff-6a,9-Ethano-4,10b-propano-

benz[h]isoquinoIine-4-carboxylate (93); configuration at the centers 6a, 10a yet to be 

determined. To compound 92 (24.5 mg, 52.9 ^imol) was added 0.53 mL of an 8% solution of 

KOH in distilled water. The mixture was refluxed for 3h, then 0.5 mL EtOH 95% were added 
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and the mixture was refluxed for 3h. To the cooled orange solution was added benzene and 

the organic phase was stripped oflF and replaced with EtOAc. Concentrated ammonium 

chloride solution (0.5 mL) was added and Ar was bubbled through the mixture in order to 

remove the ammonia. The pH gradually changed from 9 to 6, During this time, the organic 

phase was removed (four times) and replaced with fresh EtOAc. The combined organic phases 

were dried, the solvent was removed under reduced pressure and the residue was purified by 

SGC (H:EA 2; 1) to give 93 as a colorless oU (9.2 mg, 37.6%). MS m/e: 432.2, 388.2, 346.2, 

229.1,132.1, 58.1. iH-NMR(300 MHz, CDClj): 6 1.27 (t, J = 7.2 Hz, 3H), 1.35-1.62(m, 

4H), 1.70-1.90(m, 2H), 1.95-2.05(m, 2H), 2.10-2.80(m, 14H), 2.90-3.20(m, 4H), 3.41(s, 

3H), 3.62(t, J = 6.0 Hz, 2H), 4.30(qd, J = 12,4.0 Hz, 2H), 4.65(s, 2H). "C-NMR (300 

MHz, CDClj): 5 13.80, 20.50,25.40, 25.65, 29.60, 31.70, 36.50, 37.20, 38.80, 39.20, 40.30, 

42.20, 46.10, 47.80, 55.90, 58.25, 61.20, 62.70, 63.80, 66.20, 66.40, 96.40, 174.20, 207.20. 
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GENERAL SUMMARY 

An advanced pentacyclic intermediate bearing the entire carbocyclic skeleton of the 

atisine and spiramine alkaloids, together with appropriate functional groups has been obtained 

as a result of the research described in this dissertation. A direct route to this class of natural 

compounds, potentially useful from an industrial point of view, has been developed. 

A tetracyclic intermediate bearing the AEBD ring system of aconitine alkaloids has 

been synthesized. 

A highly reproducible synthesis of adamantane-containing compounds of potential 

biological interest and a highly versatile method for the generation and trapping of 

functionalized bridgehead radicals was developed and successfully applied to the synthesis of 

complex natural targets. 
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APPENDIX 1. NUMBERING SYSTEM AND STRUCTURES 
OF SOME DITERPENE ALKALOIDS 

1. Ring and numbering system: 

Ci9 diterpene alkaloids, aconitine group: 

-N —N 

Cjo alkaloids, atisine group: 

18 19 

—N 

C20 alkaloids, garrya group: 

12 

19 18 

—N 
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2. Structures of representative €^9 and C20 alkaloids. 

'"OOCPh 

MeO ;/ 

MeO 

Aconitine 

MeO 

Me-I 

OMe 

"OMe 

OH 

Bonvalol 

OMe 

"OMe 

Lycoctonine 

OOCPh 

0 i^-Benzoyimesaconme 

Ranaconine Tuguaconitine 
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Atisine 
Spiramine A 

OH 

'OH 

•OH 

OH 

'OH 

'OH 

A naturally occuring intermediate in 
the biosynthesis of spiramine. Chemical Ajaconine 
conversion to spiramines is known 

li 

Spiramine H 

'CH,Ac 

Spiranme M 
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HO 

Anopterine 

OAc 

Del^drohicidusculine 

Napelline Veatchine 
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APPENDIX n. X-RAY STRUCTURE 
OF COMPOUND 71 

0(41 
C(11) 

CdOl 

C(12) 

CO) 

0(1) 
C(3) 

C(5) 
0(2) 

CdS) N(1) C(15) C(2) 

C(6) 
C(7) C(16a) C(17a) 

0(3) 

C(14) 
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